用户名: 密码: 验证码:
海流与直立圆柱体相互作用的数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在海洋工程中,钻杆、输油气管道和立管等结构,在海流作用下,均会产生显著的涡激振动。这种特殊的流固耦合现象,会降低这些构件的操作性能,严重威胁系统的作业安全和性能。目前对涡激振荡问题的数值研究,多倾向于研究二维低雷诺数问题。
     在较为系统地回顾和总结了目前国内外研究进展的基础上,本文研究了均匀粘性流体中直立和截断圆柱体的三维受迫振荡问题,及超临界雷诺数下圆柱体的绕流问题和柔性圆柱体的流固耦合问题。
     在第二章中,针对均匀流体中直立圆柱体的涡激振动问题,建立了粘性流数学物理模型,提出了数值模拟直立圆柱体受迫振动的动态铺层式动网格方法及流固耦合过程中的滑动网格技术。
     在第三章中,基于Navier-Stokes方程,研究了三维直立贯底圆柱体和截断圆柱体的受迫振荡绕流问题,建立了粘性流数值模拟方法,在k ?ε湍流模式下进行了数值模拟分析,并与固定圆柱体的绕流特性做了比较。
     在第四章中,运用LES方法数值模拟了Spar平台大直径圆柱结构在跨临界雷诺数下的三维绕流问题,并分均匀入流和剪切入流两种情况进行分析。考察了圆柱体尾部的旋涡的三维特性,同时还对柱体表面的周向稳态和脉动压力系数,以及平均阻力和横向力系数等进行了数值分析。
     在第五章中,结合结构分析软件ABAQUS和流场分析软件FLUENT,考虑了柱体结构变形与柱体周围流场的相互作用,提出了一种全新的分析立管流固耦合的方法。结合流体软件LES方法和结构中的动态显式求解,得出了很好的数值模拟结果,验证了此方法的可行性。
Vortex-induced vibrations often occur when the structures of the ocean engineering are cut by the flow, such as drill pump, oil and gas pipelines and marine riser. The special fluid-structure interaction causes large stresses and potential fatigue damage to the marine structures and reduces their construction and performance functions and affects the safety and capability of such systems. There have numerous research works on flow past a circular cylinder in the viscous uniform fluid by use of two-dimensional numerical simulation methods. However, such a problem has not been reported yet for the case of the three-dimensional simulation under supercritical Reynolds number.
     After an overview and summarization of the recent research progress, the paper focused on the interaction of the current with a vertical circular cylinder.
     In ChapterⅡ, based on the viscous flow theory, the mathematical and physical model to the VIV problem of a horizontal circular cylinder in a uniform fluid were established. The dynamic layering mesh method was used to simulate the motions of the vertical circular cylinder under the forced oscillations.
     In ChapterⅢ, based on the N-S equation, the dynamic layering mesh method was used to simulate the motions of the vertical circular cylinder under the forced oscillations in vicious flow. The k ?εmethod was employed for the numerical simulation. The comparison was made to the flow past a static cylinder.
     In ChapterⅣ, the problem of the viscous flow past a large diameter cylinder of the Spar platform under supercritical Reynolds number was considered. Based on the incompressible Navier-Stokes equation with the Smagorinsky-Lilly model, the LES method was employed. The three dimensional characteristics of the wake vortex generated by the large diameter cylinder were successfully simulated. Moreover, numerical results were given for the characteristics of the pressure and drag coefficients around the cylinder.
     In Chapter V, the problem of the viscous flow past an elastic cylinder under supercritical Reynolds number was simulated based on the incompressible Navier-Stokes equation with the Smagorinsky-Lilly model. Both the LES method and the dynamic implicit method were employed for the numerically simulation. The distortion of the cylinder duo the flow was taken into account.
引文
[1] Zhou Shouwei. Opportunities and Challenges for South China Sea Deepwater Development. Deepwater Offshore Technology Symposium 2008. 1-11
    [2]董艳秋.深海采油平台波浪载荷及响应[M].天津大学出版社,天津: 2005.
    [3]张帆,杨建民,李润培. Spar平台的发展趋势及其关键技术.中国海洋平台,2005,10 (2) : 6-11.
    [4] Williamson C H K and Govardhan R. Vortex-induced vibrations, Annu. Rev. Fluid Mech. 2004. 36, 413-455.
    [5] Sarpkaya T. Vortex-induced oscillations: a selective review, Journal of Applied Mechanics(1979), 46(2), 241-258.
    [6] Bearman P W. 1984, Vortex shedding from oscillating bluff bodies. Annual Review of Fluid Mechanics 16, 195-222.
    [7] Vandiver J K. Dimensionless parameters important to the prediction of vortex-induced vibration of long, flexible cylinders in ocean currents, Journal of Fluids and Structures(1993), 7(5), 423-455.
    [8] Parkinson G. Phenomena and modeling of flow-induced vibrations of bluff bodies, Progress in Aerospace Sciences(1989), 26(2), 169-224.
    [9] Bishop R E D, Hassan A Y. 1964. The lift and drag forces on a circular cylinder in a flowing fluid. Proceedings of Royal Society of London, Series A.277, pp. 32-50, 51-75.
    [10] Griffin O M, Ramberg S E. 1982. Some recent studies of vortex shedding with application to marine tubulars and risers. ASME Journal of Energy Resources Technology. 104, 2-13.
    [11] Birkoff G, Zarantnanello EH. Jets, wakes and cavities. NewYork: Academic Press; 1957.
    [12] Hartlen R T, Currie I G. Lift oscillation model for vortex-induced vibration[J]. Engineering Mechanics(1970), Vol.96:577-591.
    [13] Iwan W, Blex, ins R.A model for vortex-induced oscillations of structures[J].Journalof Applied Mechanics, 1974, 41(3): 581-586.
    [14] Iwan W D.The vortex induced oscillation of non-uniform structure systems[J].Journal of Sound and Vibration, 1981, 79(2)1 291- 301.
    [15] Facchinetti ML, de Langre E, Biolley F. Coupling of structure and wake oscillators in vortex-induced vibrations. J Fluids Struct 2004;19:23-40.
    [16] Facchinetti ML, de Langre E, Biolley F. Vortex-induced traveling waves along a cable. Eur J Mech B/Fluids 2004;23:199-208.
    [17] Mathelin L, de Langre E. Vortex-induced vibrations and waves under shear flow with a wake oscillator model. Eur J Mech B/Fluids 2005;24:478-90.
    [18]秦延龙,王世澎,海洋立管涡激振动计算方法进展,中国海洋平台, 2008, 23 (4) , 14-17.
    [19] Vandiver J K, Li L.SHEAR7 program theory manual[R].MIT, Department of Ocean Engineering, 1999.
    [20] Triantafyllou M S, Triantafyllou G S, Tein D, Amhrose B D.Pragmatic riser VIV analysis[A].Proc.of the OTC[C], Houston, USA , 1999.(Paper OCT 10931).
    [21] Larsen CM, Vikestad K, Yttevik R, Passano E . VIVANA, theory manual[R].MARINEK, Trondheim, 2001.
    [22] Liu, H., On the design and dynamical analysis of a riser[J], Journal of Sound and Vibration, 1981, Vol.42:414-435.
    [23] Lyons, G.J., Patal, M.H., Application of a general technique for predication of riser vortex-induced response in waves and current[J]. Transactions of ASME, 1989,111:82-91.
    [24] Younsun Li, Simulation of dynamic response of a riser system under wave-crest loads[C]. Proceedings of the Sixth International offshore and Polar Engineering Conference, 1996, 148-155.
    [25] Oz, H. R. and Evtensel, C. A., Natural frequencies of tensioned pipes conveying fluid and carrying a concentrated mass[J]. Journal of Sound and Vibration, 2002, Vol.250 (2) : 368-377.
    [26] Ryu, S.U., Sugiyajna, Y., Ryu, B.J., Eigenvalue braches and modes for flutter of cantilevered pipes conveying fluid[J〕.Computers and Structures, 2002, 80: 1231-1241.
    [27] Sarrkar, A., Paidoussis, M.P., A cantilever conveying fluid: eoherent modes versusBeam modes[J]. International Journal of Non-Linear Mechanics, 2004, 39:467-481.
    [28] Qz, H.R., Non-1inear vibrations and stability analysis of tensioned pipes conveying fluid with variable velocity[J]. International Journal of Non-Linear Mechanics, 2001, 36, 1031-1039.
    [29] Maalawi, K.Y., Ziada, M.A., On the static instability of flexible pipes conveying fluid, Journal of Fluids and Structures. [J], 2002, Vol.16(5):685-690.
    [30] Wu, J.S. Shih, P.Y. , The dynamic analysis of a multi-span fluid-conveying pipe subjected to external load[J]. Journal of Sound and Vibration, 2001, Vol.239(2):201-215.
    [31]申仲翰,赵强,内流对海底管线涡激振动与疲劳寿命的影响[J].海洋工程, 1995, Vol.13(3):1-8.
    [32]郭海燕,王树青,刘德辅,海洋环境荷载下输油立管的静、动力特性研究[J].青岛海洋大学学报, 2001, Vol.31(4):605-611.
    [33]王福军,计算流体动力学分析.北京:清华大学出版社, 2004.
    [34] AL-Jamal H, Dalton C.Vortex induced vibrations using large eddy simulation at a moderate Reynolds number[J].Journal of Fluids and Structures, 2004, 18: 73-92.
    [35] Lourenco M, Shih C. Characteristics of the plane turbulent near wake of a circular cylinder, a particle image velocimetry study. Private communication by Beaudan and Moin, 1993.
    [36] Ong L, Wallace J. The velocity field of the turbulent very near wake of a circular cylinder. Exp Fluids 1996;20:441–53.
    [37] Beaudan P, Moin P. Numerical experiments on the flow past a circular cylinder at a subcritical Reynolds number. Technical Report TF-62, Thermosciences Division, Department of Mechanical Engineering, Stanford University, 1994.
    [38] Mittal R, Moin P. Suitability of upwind-biased finite-difference schemes for large-eddy simulation of turbulent flow. AIAA J 1997;35:1415–8.
    [39] Kravchenko AG, Moin P. Numerical studies of flow over a circular cylinder at Red = 3900. Phys Fluids 2000;12:403–17.
    [40] Breuer M. Numerical and modeling influences on large eddy simulations for the flow past a circular cylinder. Int J Heat Fluid Flow 1998;19:512–21.
    [41] Frohlich J, Rodi W, Kessler P, Bertoglio JP, Laurence D. Large eddy simulation of flowaround circular cylinder on structured and unstructured grids. In: Hirshel EH, editor. Notes on numerical fluid mechanics, vol. 66. Vieweg; 1998. p. 319–38.
    [42] Ma X, Karamanos GS, Karniadakis GE. Dynamics and low-dimensionality of a turbulent near wake. J Fluid Mech 2000;410:29–65.
    [43] Hasen RP, Long LN. Large eddy simulation of a circular cylinder on unstructured grids. AIAA paper 2002-0982, January 2002.
    [44] Piomelli U, Choudhari MM, Ovchinnikov V, Balaras E. Numerical simulations of wake/boundary-layer interactions. AIAA paper 2003-0975, 2003.
    [45] Meneveau C, Lund TS, Cabot WH. A Lagrangian dyMnamic subgrid-scale model of turbulence. J Fluid Mech 1996;319:353–85.
    [46] Balaras E. Modeling complex boundaries using an external force field on fixed cartesian grids in large-eddy simulations. Comput Fluids 2004;33:375–404.
    [47] Chunlei Liang, George Papadakis. Large eddy simulation of pulsating flow over a circular cylinder at subcritical Reynolds number[J]. Computers & Fluids; 36 (2007): 299-312.
    [48] Imran Afgan, Charles Moulinec, Robert Prosser, Dominique Laurence, Large eddy simulation of turbulent flow for wall mounted cantilever cylinders of aspect ratio 6 and 10[J]. International Journal of Heat and Fluid Flow, 28 (2007) :561–574.
    [49] Frohlich J., Rodi W., Kessler P., Parpais S., Bertoglio J., Laurence D.,. Large eddy simulation of flow over circular cylinders on structured and unstructured grids. In: Hirschel, E. (Ed.), Numerical Flow Simulation I, Notes on Numerical Fluid Mechanics, 1998: 66. 319–338.
    [50] Frohlich, J., Rodi, W., LES of flow around a circular cylinder of finite height. Int. J. Heat Fluid Flow. 2004, 25: 537-548.
    [51] Michael Breuer.. A challenging test case for large eddy simulation: high Reynolds number circular cylinder flow[J]. International Journal of Heat and Fluid Flow, 21(2000):648-654
    [52] Juan P. Pontaza, Hamn-Chen. Three-Dimensional Numerical Simulations of Circular Cylinders Undergoing Two Degree-of-Freedom Vortex-Induced Vibrations. ASME. 129(2007):158-164.
    [53]吕林.海洋工程中小尺度物体的相关水动力数值计算[D].大连:大连理工大学,2006.
    [54]沙勇.悬跨海底关系动力相应试验与数值研究[D].大连:大连理工大学, 2007.
    [55]姚熊亮,方媛媛,戴绍仕等.基于LES方法圆柱绕流三维数值模拟.水动力学研究与进展, 2007, 22[5]: 564-572.
    [56]尹德操.均匀和分层粘性流体中直立圆柱体的绕流特性研究[D].上海交通大学硕士学位论文, 2008.
    [57] Allen D W. Vortex-induced vibration of deepwater risers [A]. Proc.of the OTC[C], Houston, USA, 1998. (Paper No.OTC 8703).
    [58] Vikestad K.Multi-frequency response of a cylinder subject to vortex shedding and support motions [D]. PhD Thesis, Department of Marine Engineering, Norwegian University of Science and Technology, 1998.
    [59] Vikestad K, Vandiver J K, Laesen C M. Added mass oscillation frequency for a circular cylinder subject to vortex-shedding vibrations and external disturbance [J]. Journal of Fluids and Structures, 2000,14:1071-1088.
    [60] Feng C. C., The measurement of vortex induced effects in flow past stationary and oscillating circular and d-section cylinders. Master’s Thesis, Department of Mechanical Engineering, University of British Columbia, Canada.1968.
    [61] Khalak A, Williamson C H K. Motions, forces and mode transitions in vortex-induced vibrations at low mass-damping[J]. Journal of Fluids and Structures, 1999, 13:813-851.
    [62] Khalak A, Williamson C H K. Dynamics of a hydroelastic cylinder with very low mass and damping[J]. Journal of Fluids and Structures, 1996,10:455-472.
    [63] Jauvtis N, Williamson C H K. Vortex-induced vibration of a cylinder with two degrees of freedom[J]. Journal of Fluid Mechanics, 2003, 17:1035-1042.
    [64] Govardhan R, Williamson C H K. Modes of vortex formation and frequency response of a freely vibrating cylinder[J]. Journal of Fluid Mechanics, 2000, 420:85-130.
    [65] Sarpkaya T. A critical review of the intrinsic nature of vortex-induced vibrations[J]. Journal of Fluid Mechanics, 2004,19:389-447.
    [66] Bishop, R.E.D., Hassan, A.Y., 1964. The lift and drag forces on a circular cylinder in a flowing fluid. Proceedings of Royal Society of London, Series A 277, pp. 32-50, 51-75.
    [67] Sarpkaya, T., 1978. Fluid forces on oscillating cylinders. Journal of Waterway Port Coastal and Ocean Division ASCE, WW4 104, 275-290.
    [68] Staubli T. Calculation of the vibration of an elastically mounted cylinder using experimental data from forced oscillation. J. Fluids Eng.(1983), 105,225-229.
    [69] Griffin O M, Votaw C W. 1972. The vortex street in the wake of a vibrating cylinder. Journal of Fluid Mechanics. 51, 31-48.
    [70] Govardhan R, Williamson C H K. Modes of Vortex formation and frequency response of a freely vibrating cylinder. J. Fluid Mech. 2000, 420, 5-130.
    [71] T. Sarpkaya. A critical review of the intrinsic nature of vortex-induced vibrations. Journal of Fluids and Structures 19 (2004) : 389–447
    [72] Vandiver, J. K., Allen, D. and Li, L., 1996. The Occurrence of Lock-In Under Highly Sheared Conditions, Journal of Fluids and Structures 10, 555-561.
    [73] Huse, E., Kleiven. G. and Nielsen, F. G., 1998. Large Scale Model Testing of Deep Sea Risers, Proc. of the OTC, Houston. USA, Paper No. OTC 8701.
    [74] Willis, N. R. T. and Thethi, K. s., 1999. Stride JIP: Steel Risers in Deepwater Environments Progress Summary, Proc. of the OTC, Houston. USA, Paper No. OTC 10974.
    [75] Lie, H., Larsen, C.M., Vandiver, J.K., 1997. Vortex induced vibrations of long marine risers; model test in a rotating rig. In : Chakrabarti, S., Kinoshite, T., Maeda, H., Ertekin, C. (Eds.), Proc. of the 16th OMAE, vol. I-B. ASME, Yokohama, pp. 241-252.
    [76] Lie, H., Mo, K., Vandiver, J.K., 1998. VIV model of a bare-and a staggered buoyancy riser in a rotating rig. Proc. of the OTC, Houston, Texas, Paper No. OTC 8700.
    [77] Chaplin, J.R., Bearman, P.W., Huera Huarte, F.J., Pattemden, R.J., 2004a. Laboratory measurements of vortex-induced vibrations of a vertical tension riser in a stepped current. In: de Langre, E., Axisa, F.(Eds.), Proc. of the 8th FIV, vol. 2, Paris, France, pp. 279-284.
    [78] Chaplin, J.R., Bearman, P.W., Fontaine, E., Herfjord, M., Isherwood, M., Larsen, C.M., Meneghini, J.R., Moe, G., Triantafyllou, M.S., 2004b. Blind predictions of laboratory measurements of vortx-induced vibrations of a tension riser. In: de Langre, E., Axisa, F.(Eds.), Proc. of the 8th FIV, vol. 2, Paris, France, pp. 285-290.
    [79] Chaplin, J.R., Bearman, P.W., Huera Huarte, F.J., Pattemden, R.J., 2005a. Laboratorymeasurements of vortex-induced vibrations of a vertical tension riser in a stepped current. Journal of Fluids and Structures 21, 3-24.
    [80] Chaplin, J.R., Bearman, P.W., Cheng, Y., Fontaine, E., Graham, J.M.R., Herfjord, M., Isherwood, M., Lambrakos, K., Larsen, C.M., Meneghini, J.R., Moe, G., Triantafyllou, M.S., Willden, R.H.J., 2005b. Blind predictions of laboratory measurements of vortx-induced vibrations of a tension riser. Journal of Fluids and Structures 21, 25-40.
    [81] MoeG, and Chucheepsakul S.The effect of internal flow on marine risers[A].7th Intematinal Conference on Offshore Mechanics and Arctic Engineering[C], 1998.375-382.
    [82] GUO HY,WANG SQ, Dynamic characteristics of marine risers conveying fluid[J].China Ocean Engineering, 2000, 14(2): 153.160.
    [83] GUO H WAN G YB and FU Q.The effect of internal fluid on the response of vortex.induced vibration of marine riser[J].China Ocean Engineering, 2004, 18(1): 11-20.
    [84] LOU M, DING J, GUO HY and DONG XL, The effect of Internal flow on vortex-induced vibration of submarine free spanning pipelines[J].China Ocean Engineering,2006, 19(1): 147-154.
    [85]娄敏,海洋立管的涡激振动,中国造船, 2007, 48, 369-373.
    [86] Furnes, G. K., Hassanein, T., Halse, K. H., and Eriksen, M., 1998. A field study of flow induced vibrations on a deepwater drilling riser, Proc. of the OTC, Houston, Paper No. OTC 8702.
    [87] Halse, K.H., 2000. Norwegian Deepwater Program: Improved Predictions on Vortex-Induced Vibrations, Proc. of the OTC, Houston, Texas, Paper No. OTC 11996.
    [88] Cornut, S. F., and Vandiver, J. K., 2000. Offshore viv monitoring at Schiehallion: analysis of riser viv response, Proc. of the 19th OMAE, New Orleans, USA, Paper No. OMAE 2000/PIPE-5022.
    [89] Kaasen, K. E., Lie. H., Solaas, F. and Vandiver, J. K., 2000. Norwegial Deepwater Program: Analysis of Vortex-Induced Vibrations of Marine Risers Based on Full-Scale Measurements, Proc. of the OTC, Houston, Texas, Paper No. OTC 11997.
    [90] Ottesen Hansen, N. E. and Petersen, B., 1998. Vortex induced vibrations of pipe in high waves: Field measurements, 2nd International Conference on Hydroelasticity inMarine Technology, Kyushu Univ, Japan.
    [91] Machado, R. Z., Mourelle, M. M., Franciss, R., Silva, R. M., Lima, C. S., Eisemberg, R. and Oliveria, D. 1999. Monitoring program for the first steel catenary riser installed in a moored floating platform in deep water. Oceans Conference Record(IEEE) 2, 801-810.
    [92] Lyons, G. J., Vandiver, J. K. and Larsen, C. M., 2003. Ashcombe G T. Vortex induced vibrations measured in service in the Foinaven dynamic umbilical and lessons from prediction, Journal of Fluid and Structures 17, 1079-1094.
    [93]韩占忠,王敬,兰小平. FLUENT-流体工程仿真计算实例与应用.北京:北京理工大学出版社. 2004
    [94]王瑞金,张凯,王刚. Fluent技术基础与应用实例.北京:清华大学出版社.2007.
    [95]江帆,黄鹏. Fluent高级应用与实例分析.北京:清华大学出版社. 2008.
    [96]庄茁,张帆. ABAQUS非线性有限元分析与实例.北京:科学出版社. 2005
    [97]石亦平,周玉蓉. ABAQUS有限元分析实例详解.北京:机械工业出版社. 2006
    [98]王金昌,陈页开. ABAQUS在土木工程中的应用.杭州:浙江大学出版社.2006
    [99]刘应中,缪国平.高等流体力学.上海:上海交通大学出版社. 2002
    [100] O.M. Faltinsen. SEA LOADS ON SHIPS AND OFFSHORE STRUCTURES. British: Cambridge University press. 1992.
    [101] Fluent Inc., FLUENT User’s Guide. Fluent Inc., 2003.
    [102] Rehm R G, Radt A. Internal waves generated by a translating oscillation body. J Fluid Mech, 1975, 68: 235-258.
    [103] Agarwal AK, Jain AK. Nonlinear coupled dynamic response of offshore Spar platforms under regular sea waves[J].Ocean Engineering, 2003, 30: 487-516.
    [104]潘志远.海洋立管涡激振动机理与预报方法研究[D].上海交通大学博士学位论文, 2005.
    [105]王丽丽.两层粘性流中水平圆柱体的涡激振动特性研究[D].上海交通大学硕士学位论文, 2007.
    [106]陆鑫森.高等结构动力学[M].上海:上海交通大学出版社. 1992.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700