用户名: 密码: 验证码:
多传感器卫星海表温度数据的印证与交叉比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
遥感技术具有覆盖范围广、可对同一区域重复观测等特点,为全球海洋的观测研究提供了便利。卫星遥感对海洋表面温度( Sea Surface Temperature,SST)的观测精度是关系到全球气候预测的关键因素之一,不同的星载传感器具有不同的测量精度,显而易见,卫星SST数据的印证和不同SST数据集的之间的交叉印证工作是必不可少的,一方面可以提高不同传感器卫星SST反演产品的精度,促进数据产品的业务化应用,另一方面为SST数据融合、气候分析等工作提供一定的科学依据。本文工作主要对卫星SST数据在全球不同区域的相关印证分析研究进行了调研、综述,并以西北太平洋为研究的目标区域,使用2005年的多传感器卫星SST产品及相关现场实测数据,经过数据的预处理、质量控制、数据匹配等处理后,采用统计方法,比较分析了卫星数据集与现场实测的浮标数据的一致性、差值特征、不同数据集之间的差值特征和误差来源。
     首先对多传感器卫星海表温度产品(Satellite SSTs)与现场实测浮标数据(BuoySST)进行了印证分析。中国海洋大学卫星地面站接收的NOAA/AVHRR卫星遥感数据的两种SST反演算法产品MCSST和NLSST分别在西北太平洋印证的结果如下:MCSST和NLSST都要比现场实测数据温度低,MCSST的年平均偏差(BuoySST-MCSST)白天和晚上分别是0.23°C、0.36°C,年标准偏差白天和晚上分别为0.88°C、0.93°C; NLSST的精度相比于MCSST有所提高,年平均偏差(BuoySST-NLSST)白天和晚上分别为0.04°C、0.25°C,年标准偏差变化不大,白天和晚上分别为0.87°C、0.93°C;对卫星天顶角小于45°的观测数据反演的NLSST的印证结果是年平均偏差白天和晚上分别为-0.16°C、0.13°C,年标准偏差也有所提高,白天和晚上分别为0.73°C、0.80°C,因此在SST的交叉印证中采用此数据集进行比较。对NOAA/NASA AVHRR Pathfinder SST(PFSST)、Aqua & Terra/MODIS SSTs(AquaSST、TerraSST)及Aqua/AMSR-E SST这四种数据集分别与BuoySST印证的结果是年平均偏差(BuoySST-Satellite SSTs)分别为:PFSST的是-0.08°C/-0.08°C(白天/晚上,下同)、AquaSST的是-0.12°C/0.34°C、TerraSST的是0.00°C/0.11°C、AMSR-E SST的是-0.20°C/-0.18°C;年标准偏差分别为: PFSST的是0.60°C/0.68°C、AquaSST的是0.67°C/0.76°C、TerraSST的是0.69°C/0.74°C、AMSR-E SST的是0.64°C/0.67°C。结果表明红外数据集除MCSST、NLSST和AquaSST在晚上的年平均偏差明显较大外,其余数据集的年平均偏差都较小;AMSR-E SST总体比实测数据温度高。
     其次对不同卫星SST数据集进行了交叉印证,分析了不同数据集之间的差值特征。总体上,卫星天顶角小于45°的观测数据反演的NLSST数据在晚上都要比其他数据集温度低,在白天比其他红外数据集温度高,AquaSST与NLSST的年平均偏差较小,AMSR-E SST与NLSST的年平均偏差最大;AMSR-E SST要比红外数据集温度高。从两两数据集差值的空间分布图中也可以看出PFSST与MODIS SSTs的两个数据集的一致性最好,除AquaSST晚上的数据外,标准偏差和平均偏差都比较低,没有明显的高正值和低负值的分布,且有一定的区域特征,季节性变化明显。不同的测量原理、不同的反演算法、不同的时空分辨率、不同大气状况的影响等都是误差的主要来源。
     各传感器的算法反演的温度产品具有较好的一致性。在实际使用的过程中,有必要对AVHRR LAC SST数据进行进一步的云检测算法的改进和反演系数的订正工作;在多传感器海表温度的高精度应用中,如气候变化研究、海表温度数据融合,需要考虑不同传感器获取的海表温度的订正,以提供高精度的产品。
Remote Sensing techniques have the advantage of synoptic and frequent view of the large geographic areas, which is useful and convenient for the studies of the global oceans. The accuracy of the Sea Surface Temperature (SST) derived from satellite measurements is one of the key factors of climate prediction. Obviously, it is necessary to validate the satellite SSTs derived from multi-sensors and compare different SST datasets. The accuracy of SST datasets will be improved, which will promote the operational applications of SST datasets; on the other hand, the results will be very important for data merging and climate analysis. The studies on satellite SST validation and intercomparison published in recent years is investigated. Validation and intercomparison of multi-sensor SST datasets in the Northwest Pacific during the period of 2005 are carried out. After the preprocessing of data, quality control and generation of mach-up database, the consistency and characteristics of the differences between the satellite SST datasets and in situ buoy SST data are compared and analyzed. The characteristics of the differences among different SST datasets and error sources are also analyzed.
     Firstly, multi-sensor Satellite SST datasets in the Northwest Pacific are compared with in situ buoy SST data respectively. MCSST and NLSST are two products with different retrieval algorithms, which are received and processed by the Satellite Ground Station of Ocean University of China. The results of preliminary validation show that MCSST and NLSST data are lower than in situ buoy SST data. The annual mean bias of the difference between in situ buoy SST data and MCSST data in day and night time is 0.23°C and 0.36°C respectively, and the annual standard deviation of it in day and night time is 0.88°C and 0.93°C respectively; The mean bias of the difference between in situ buoy SST data and NLSST data in day and night is 0.04°C and 0.25°C respectively. It has a small change in the annual standard deviation in day and night which is 0.87°C and 0.93°C respectively. Matchup data with satellite zenith angle greater than 45°are excluded,the mean bias of the difference between in situ buoy SST data and NLSST in day and night is -0.16°C and 0.13°C respectively; It has a good change in the annual standard deviation in day and night which is 0.73°C and 0.80°C respectively. The results indicate that NLSST data is better than MCSST data,so it is used in intercomparisons of the multi-sensor satellite SST datasets。. The four satellite SST datasets of NOAA/NASA AVHRR Pathfinder (PFSST), Aqua/MODIS SST, Terra/MODIS SST, and AMSR-E SST are compared with in situ buoy SST data too. The annual mean bias of the difference between in situ buoy SST data and these datasets is -0.08°C/-0.08°C (day/night, as follows), -0.12°C/0.34°C, 0.00°C/0.11°C, and -0.20°C/-0.18°C respectively. The annual standard deviation of them is 0.60°C/0.68°C, 0.67°C/0.76°, 0.69°C/0.74°C, and 0.64°C/0.67°C respectively. The statistics shows that the annual mean bias is small except that of MCSST and that of AquaSST in night time. Generally, AMSR-E SST is higher than in situ buoy SST.
     Secondly, the multi-sensor satellite SST datasets are intercompared and the characteristics of the differences between them are analyzed. The intercomparisons of multi-sensor SST data with NLSST data show that NLSST is lower than other dataset in night,and it is higher than the other infrared dataset. The annual mean bias between AquaSST and NLSST is lower while that between AMSR-E and it is the largest. The results of the intercomparisons also show AMSR-E SST is higher than the infrared SST datasets. The consistency of PFSST and MODIS SSTs is the best except for AquaSST in night and the annual standard deviation and mean bias are low. The statistics of the differences show regional and seasonal variations. The error sources may come from different measuring principles, different retrieval algorithms, different resolutions and different atmospheric conditions.
     In summary, the statistics shows that different SST datasets are consistent with each other. Some infrared SST data are contaminated by cloud. Cloud detection and the retrieval coefficients of AVHRR LAC SST are needed to be improved. Correction of multi-sensor satellite SST datasets should be made for the applications required high accuracy SST such as study of climate change and data merging.
引文
[1]赵英时等遥感应用分析原理与方法科学出版社
    [2] Donlon, C. J., I. S. Robinson, 1997: Observations of the oceanic thermal skin in the Atlantic Ocean, J. Geophys. Res., 102(C8), 18585-18606, 10.1029/97JC00468
    [3]刘玉光等2005:卫星海洋学中国海洋大学
    [4] Guan, L. and H. Kawamura, 2003: SST availabilities of satellite infrared and microwave measurements. J. Oceanogr., Vol. 59, No. 2, 201-209.
    [5] Hosoda H., Murakami H., et. al., 2006: Difference Characteristics of Sea Surface Temperature Observed by GLI and AMSR Aboard ADEOS-II Journal of Oceanography, Vol. 62, pp. 339 to 350
    [6]孙凤琴,张彩云,商少平,商少凌. 2007,西北太平洋部分海域AVHRR、TMI与MODIS遥感海表层温度的初步验证厦门大学学报(自然科学版), V46 Sup. 1.
    [7]郑嘉淦,李继龙,杨文波, 2006:利用MODIS遥感数据反演东海海域海表温度的研究海洋渔业V18(2) 141-146
    [8]李娜,孙凤琴,张彩云等2006:台湾海峡及其邻近海域AV H RR遥感SST的初步验证厦门大学学报,45(3) 383-387
    [9]鲍献文,万修全,高郭平等.2002:渤海、黄海、东海AVHRR海表温度场的季节变化特征.海洋学报,24(5):125—133.
    [10]管磊,陈锐,贺明霞, 2002:ERS-1/ ATSR海表温度在热带太平洋和西北太平洋的印证与分析海洋学报6(1) 63-69
    [11]高郭平,钱成春,鲍献文等.2001:中国东部海域卫星遥感PF—SST和现场观测资料的差异.海洋学报,23(4):121—126.
    [12] Hosoda H., Murakami H., et. al., 2007: Algorithm and Validation of Sea Surface Temperature Observation Using MODIS Sensors aboard Terra and Aqua in the Western North Pacific. Journal of Oceanography, Vol. 63, pp. 267 to 280
    [13] Barton I, Pearce A , 2006: Validation of GLI and other satellite-derived sea surface temperatures using data from the Rottnest Island ferry, Western Australia. Journal of Oceanography 62(3): 303.
    [14] Dong S., S. T. Gille, J. Sprintall, C.Gentemann 2006: Validation of the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E) sea surface temperature in the Southern Ocean, J. Geophys. Res., 111, C04002, doi:10.1029/2005JC002934.
    [15] Sakaida F., Hosoda K. et. al., 2006: Sea Surface Temperature Observation by Global Imager (GLI)/ADEOS-II: Algorithm and Accuracy of the Product Journal of Oceanography, Vol. 62, pp. 311 to 319
    [16] Wentz, FJ, CL Gentemann, DK Smith and others, 2000, Satellite measurements of sea surface temperature through clouds, Science, 288, 847-850
    [17] Stammer,D.;Wentz, F.; Gentemann,C..2003: Validation of Microwave Sea Surface Temperature Measurements for Climate Purposes. Journal of Climate, vol. 16, Issue 1, pp.73-87
    [18] Kilpatrick, K.A., G.P. Podesta and R. Evans 2001: Overview of the NOAA/NASA Advanced Very High Resolution Radiometer Pathfinder algorithm for sea surface temperature and associated matchup database, Journal of Geophysical Research-Oceans, 106 (C5): 9179-9197
    [19] Vazquez-Cuervo, Jorge; Sumagaysay, Rosanna,2001:A Comparison between Sea Surface Temperatures as Derived from the European Remote Sensing Along-Track Scanning Radiometer and the NOAA/NASA AVHRR Oceans Pathfinder Dataset. Bulletin of the American Meteorological Society, vol. 82, Issue 5, pp.925-944
    [20] Gentemann C. L., Donlon C.J., Alice S. M., and Frank J. W.2003:Diurnal signals in satellite sea surface temperature measurements Geo. Res.Let., v30, No. 3
    [21] Merchant, C. J., and A. R. Harris, M. J. Murray, and A. M. Zavody, 1999: Toward the elimination of bias in satellite retrievals of sea surface temperature. Part 1: Theory, modeling and interalgorithm comparison. J. Geophys. Res., 104 (C10), 23 565-23 578
    [22] James W. Hurrell and Kevin E. Trenberth 1999: Global Sea Surface Temperature Analysis, Modeling, and Reanalysis. Bulletin of the American Meteorological Society, vol. 80, Issue 12, pp.2661-2678
    [23] Douuglas A. M., WALTER O. O. 1997: Satellite-Derived Sea Surface Temperatures: Evaluation of GOES-8 and GOES-9 Multispectral Imager Retrieval Accuracy J. Atm. Oce. Tec. v15, 788-796
    [24] Schluessel, P., E. Emery, H. Grassl, and T. Mammen, 1990: On the bulk-skin temperature difference and its impact on satellite remote sensing of sea surface temperature. J. Geophys. Res., 95, 13 341-13 356
    [25] Carol Anne Clayson and Derrick Weitlich, 2007: Variability of Tropical Diurnal Sea Surface Temperature, Journal of Climate,Volume 20, Issue 2, pp. 334–352
    [26] Gentemann C. L., F. J. Wentz, C. A. Mears, D. K. Smith 2004: In situ validation of Tropical Rainfall Measuring Mission microwave sea surface temperatures, J. Geophys. Res., 109, C04021, doi:10.1029/2003JC002092.
    [27] Donlon, C. J.; Minnett, P. J.; Gentemann, C.; Nightingale, T. J.; Barton, I. J.,et.al.,2002:Towards improved validation of satellite sea surface skin temperature measurements of climate research. J Climate, Volume 15, Issue 4, pp. 353-369
    [28] Gentemann, C.L.; Wentz, F.J.,2001 :Satellite microwave SST: accuracy, comparisons to AVHRR and Reynolds SST, and measurement of diurnal thermocline variability Geoscience and Remote Sensing Symposium, 2001. IGARSS apos;01. IEEE 2001 International Volume 1, Issue , 2001 Page(s):246 - 248 vol.1 Digital Object Identifier 10.1109/IGARSS.2001.976116
    [29] Donlon, C. J., I. S. Robinson, ,1997: Observations of the oceanic thermal skin in the Atlantic Ocean, J. Geophys. Res., 102(C8), 18585-18606, 10.1029/97JC00468
    [30]殷晓斌,刘玉光等,红外和微波辐射计反演海表面温度的比较海洋通报2007 V26 No.5
    [31] JAXA , 2006.3: AMSR-E Data Users Handbook ,Version 4, NCX-030021
    [32] McClain, E. P., W. G. Pichel, and C. C. Walton, 1985: Comparative performance of AVHRR-based multichannel sea surface temperatures. J. Geophys. Res., 90, 11 587-11 601
    [33] Guillermo P., PodestáManuel Arbelo, et.al. 2003: Errors in high-latitude SSTs and other geophysical products linked to NOAA-14 AVHRR channel 4 problems, GEOPHYSICAL RESEARCH LETTERS, VOL. 30, NO. 11, 1548, doi:10.1029/2003GL017178
    [34] http://www.nodc.noaa.gov/SatelliteData/pathfinder4km/userguide.html
    [35] Walton, C. C., 1988: Nonlinear multichannel algorithm for estimating sea surface temperature with AVHRR satellite data. J. Appl. Meteor., 27, 115-124.
    [36]ftp://podaac.jpl.nasa.gov/pub/sea_surface_temperature/modis/doc/MODIS_SST_Guide_Doc.pdf
    [37] Brown O.B., and Minnett P.J., 1999: MODIS Infrared Sea Surface Temperature Algorithm - Algorithm Theoretical Basis Document, Version 2.0., University of Miami, Under Contract Number NAS5-31361
    [38] Wentz Frank J.,and Meissner Thomas 2000: Algorithm Theoretical Basis Document (ATBD) AMSR Ocean Algorithm Version 2.0. RSS Tech. Proposal 121599A-1
    [39] http://ioc.unesco.org/GOOS/neargoos/neargoos.htm#Operation。
    [40]周俊华,史培军,范一大等,2004:西北太平洋热带气旋风险分析自然灾害学报V13(3) 146-151
    [41]周晓英,2005,长江口海域表层水温变化的气候特征,中国海洋大学硕士论文,中国学位论文全文数据库,分类号:P732

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700