用户名: 密码: 验证码:
溪洛渡水电站建基面Ⅲ_2级岩体分布及可利用性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
溪洛渡水电站作为高坝,对坝基岩体要求非常高,在可研阶段建基岩体选择以微风化~新鲜作为标准,设计阶段考虑工程的安全、可靠、经济、合理性,在坝基满足拱坝的稳定和变形条件下,对建基面进行了一定的优化,在建基面开挖后不同高程存在一定比例的Ⅲ2级岩体,Ⅲ2级岩体的存在对大坝的稳定和变形有多大影响以及Ⅲ2级岩体的工程地质特性将是本文研究的重点。
     本论文以溪洛渡水电站两岸建基岩体和Ⅲ2级岩体为研究对象,通过现场地质调查,全面系统地获取地质资料,实地开展多种测试工作,对建基面岩体质量评级、岩体质量的分布情况,建基面开挖后岩体的力学参数,建基面内部的岩体质量以及Ⅲ2级岩体的岩体质量、力学参数进行进行比较系统的研究。
     论文研究以大量的物理、力学试验成果和变形试验结果,辅助声波验证等多种方法和手段对两岸开挖后建基岩体质量的工程地质特性进行综合研究,以定性到定量的方法,通过裂隙间距、声波纵波速度、岩体的力学变形参数、Lc密集区综合变形模量研究对建基岩体进行表部和深部分级,并通过声波和变形模量作出立体地质图,可通过剖切得到任意方向的岩级展布图,从而区分Ⅲ2级岩体与建基面可利用的Ⅱ级特别是Ⅲ1级岩体在岩体结构、岩体质量、力学变形参数上的差别与不同,进而研究得出溪洛渡建基Ⅲ2级岩体具有块度小,但力学参数相对较高的特点,平均波速接近4000m/s,对应变形模量9.5GPa,相对于其余水电工程,在力学参数上已达到Ⅲ1级岩体指标。用数值模拟对Ⅲ2级岩体变形进行验算,结果显示在建基面下游拱端变形量偏大,因模拟中对Ⅲ2级岩体变形模量进行了折减,如取Ⅲ2级岩体变形模量上限可以达到建基岩体设计要求。通过已有工程以固结灌浆处理类似较差岩体的效果和成功经验,结合溪洛渡坝基岩体的可灌性较好以及溪洛渡对较差岩体或Ⅲ2级岩体的固结灌浆处理效果,再对Ⅲ2级岩体进行细分,从岩体力学参数上对不同区段的Ⅲ2级岩体力学特征进行区分,从力学性质上来判断Ⅲ2级岩体,并按照规范及前期研究成果对应岩级的变形模量,归为到合理的岩级中,再判定其可利用性,对于波速在3800m/s以上的Ⅲ2级岩体进行高质量的固结灌浆提出可利用的可能性。
     通过对溪洛渡Ⅲ2级岩体工程地质特性的研究,在保证大坝安全的前题下,对Ⅲ2级岩体提出部分可利用性,对工程的经济性及其它类似工程借鉴都具有重要意义。
Xiluodu Hydroelectric Power Station as a high dam is demand high Strictly of dam foundation, in the research stage to choose foundation rock of slightly weathering ~ fresh as a standard, in the design phase, consider to the project’s safety、reliability、economy and reasonable, to achieve the arch dam’s stability and deformation conditions, do a certain degree of optimization of the foundation surface, after the excavation of foundation surface there existence a certain proportion ofⅢ2 level rockmass in different elevation,how many impact ofⅢ2 level rockmass’s existence on the dam's stability and the extent of deformation,andⅢ2 level rockmass’s engineering geological characteristics will be the focus of this paper.
     In this paper, the two sides foundation rockmass in Xiluodu hydropower station and theⅢ2 level rockmass are the study object, through on-site geological survey, a comprehensive and systematic access to geological data, a variety of field tests on the base surface of the rock mass quality rating, rock mass quality the distribution of base surface after excavation of the mechanical parameters of rock mass, the internal base surface of the rock mass quality and rockⅢ2 level of the rock mass quality, the mechanical parameters to compare systems.
     Research papers through on-site geological survey to obtain geological data comprehensive and systematic, carry out variety of scene tests, using variety of ways and means to comprehensive study on foundation rockmass’s engineering geological characteristics on the two sides after excavation, from qualitative to quantitative methods,through study on the crack spacing、longitudinal wave speed of sound、the mechanics of rock deformation parameters and Lc-intensive area deformation modulus to classification the foundation rock, in order to distinguish betweenⅢ2 level rockmass and theⅡlevel rockmass on foundation surface can be used, especially the gradeⅢ1 level rockmass in the rock structure、rock mass quality、the mechanical deformation parameters with different, so we conclude the features of XiluoduⅢ2 level foundation rockmass with a small degree, but the mechanical parameters of the is relatively highly, with an average velocity close to 4000m/s, corresponding to the deformation modulus of 9.5GPa, compared the rest of hydropower projects in the mechanical parameters have reached rockⅢ1 level indicators. Using numerical simulation medhod to check the results ofⅢ2 level rockmass deformation to shown in the lower reaches of foundation surface arch side the deformation become bigger, because in the simulation ofⅢ2 level rockmass’deformation modulus were reduced, if access theⅢ2 level rockmass’deformation modulus ceiling it can be achieved foundation rockmass design requirements. According to the exist project have been dealing with this kind of consolidation grouting in rock mass effect poor and successful experiences, combined with Xiluodu dam foundation grouting of rock can be better and less Xiluodu on rock or rockⅢ2 level to deal with the effect of the consolidation grouting,Ⅲ2 level again broken down rock, rock mechanics parameters from different sections of theⅢ2 level to distinguish between the characteristics of rock mechanics, from the table to determine the mechanical properties of rockⅢ2 level, and in accordance with the norms and the corresponding pre-rock-level research modulus of deformation, into the rock to a reasonable level, and then to determine their availability for the wave velocity in the 3800m / s and above levelⅢ2 for high-quality rock mass consolidation grouting can make use of the possibility raised.
     Through the study on theⅢ2 level rockmass’s engineering geological characteristics of Xiluodu, ensuring the safety of the dam, propose the part ofⅢ2 level rockmass can be used, it has import significance to the difficulty of the engineering and economic.
引文
[1]《中国水力发电工程》编审委员会.中国水力发电工程(水工卷).中国电力出版社,2000
    [2]《中国水力发电工程》编审委员会.中国水力发电工程(工程地质卷).中国电力出版社,2000
    [3]苏生瑞,周志东.溪洛渡水电站坝基岩体质量综合分级[J].人民长江,1998,29(12):29~31
    [4]周明军,张建海,赵文光,王仁坤.层间层内错动带对溪洛渡高拱坝坝肩(基)稳定性的影响研究[J].水电站设计,2005,21(1):26~30
    [5]王毅,杨建宏.玄武岩的岩体结构与力学性状研究[J].岩石力学与工程学报,2002,21(9):1307~1310
    [6]潘家铮.溪洛渡电站拱坝设计优化之我见[J].中国三峡建设,2004(2),4~5
    [7]黄国明,黄润秋.某坝址玄武岩岩体强度和变形特征[J].长江科学院院报,1998,15(6):19~22
    [8]沈军辉,王兰生,李天斌,赵其华,陈卫东.溪洛渡水电站坝区岩体的浅表生改造[J].重庆大学学报,2003,26(1):83~86
    [9]《工程地质手册》编写委员会,工程地质手册(第三版).北京:中国建筑工业出版社,1992
    [10]谷德振.岩体工程地质力学基础[M].北京:科学出版社,1979
    [11]王思敬,杨志发,刘竹华.地下工程岩体稳定分析[M].北京:科学出版社,1984
    [12]孙广忠.岩体结构力学[M].北京:科学出版社,1989
    [13]孙广忠.论“岩体结构控制论”[J].工程地质学报,1993年创刊号:14~18
    [14]曹劲,吴旭军.岩体结构概率模拟的原理与方法[J].勘察科学技术.1990(4):30~35
    [15]陈剑平,王清等.岩体结构统计均匀区的划分[J].地质灾害与环境保护.1996,7(1):19~24
    [16]肖尚斌,张艳君等.蒲石河抽水蓄能电站地下厂房区岩体结构统计均质划分[J].东北水力发电.1997(8):39~41
    [17]韩爱果,聂德新,孙冠平,李雪峰.岩体结构研究中结构面间距取值方法探讨[J].岩石力学与工程学报,2003,22(增2):2575~2577
    [18]吴志勇,聂德新.基于数码图像的岩体结构信息采集处理研究[J].岩石力学与工程学报,2003,22(增2):2568~2571
    [19]柴贺军,黄地龙.岩体结构三维可视化及其工程应用研究[J].岩土工程学报.2001,23(2):217~220
    [20]陈宏.岩体结构分析计算机系统的程序设计[J].有色金属(矿山部分).2002,54(3):28~31
    [21]傅荣华,李天斌等.确定岩体结构类型的专家系统方法[J].水文地质工程地质.1994(2):6~9
    [22]范留明,黄润秋.一种基于结构面密度的岩体结构均质划分方法[J].岩石力学与工程学报.2003,22(7):1132~1136
    [23]徐能熊,何满潮.岩体结构三维构模技术及其可视化系统研制[J].岩土工程学报,2004,26(3):373~377
    [24] Terzaghi K.Intorduction to tunnel geology in rock tunneling with steel supports.Proctor and whie 1946
    [25] Müller L,Bock H.and Müller K.Structural geology of rocks-rock mechanics in construction(in German).Berlin:Wilhelm Ernst & Sohn Verlag,1970
    [26] Evert Hock.Rock Engineering(Course notes),1999
    [27] Deere,D.U.Technical description of rock cores for engineering purpose.Rock Mech.Engng Geol.1964,1(1):17~22
    [28] Barton N.Analysis of rock mass quality and support practice in tunneling and a guide for estimating support requirements.Rock Mechanics,1974,6(4):189~236
    [29] Manuel Romana.DMR,a new geomechanics classification for use in dams foundations,adapted from RMR.Reprint for 4th international Symposium on Roller Compacted Concrete(RCC)Dams MADRID.2003,P:1~9
    [30]杨子文.岩体工程分级-岩石力学的理论与实践[M].北京:水利电力出版社,1981
    [31] GB 50214-94,工程岩体分级标准[S].北京:中国计划出版社,1995
    [32] GB 50287-99,水利水电工程地质勘察规范[S].北京:中国计划出版社,1999
    [33]石长青,赵毅鹏,肖用海.岩体质量工程地质评价[J].辽宁工程技术大学学报(自然科学版),2001,20(4):530~53
    [34]胡卸文,黄润秋.水利水电工程中的岩体质量分类探讨[J].成都理工学院学报,1996,23(3):64~68
    [35]杜时贵,王思敬.岩石质量定量描述研究现状及趋向[J].工程地质学报,1998,6(3):230~237
    [36]陈昌彦,王贵荣.各类岩体质量评价方法的想相关性探讨[J].岩石力学与工程学报,2002,21(12):1894~1900
    [37]唐胜传,黄润秋.岩体质量分类[J].西南工学院学报,2001,16(4):41~43
    [38]任重阳,唐爱松.岩体工程质量分级应用研究[J].岩土力学,2003,24(增1):53~57
    [39]王锦国,周志芳,杨建,杨建宏.溪洛渡水电站坝基岩体工程质量的可拓评[J].勘察科学技术,2001,(5):25~29
    [40]范国颂.百色水利枢纽大坝基础岩体变形试验研究[J].广西水利水电,2004(1):36~39
    [41]马志强,张艳萍,田建海,齐立伟.江口水电站坝基软弱夹层分析及处理[J].东北水利水电,2005,23(247):1~2
    [42]赵永刚.二滩水电站坝基软弱岩带的处理方法[J].水电站设计,2001,17(3):23~27
    [43]赵永刚.沙牌水电站拱坝基础处理研究[J].水电站设计,2003,19(4):64~68
    [44]李锡均.碎裂岩体中高压灌浆能否形成有效防渗帷幕的研究[J].西部探矿工程,2004(94):17~18
    [45]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1994
    [46]崔银祥.碎裂岩体用作高混凝土重力坝坝基的可能性评价—以金沙江金安桥水电站为例[D].成都理工大学博士论文,2005
    [47] Homas Dalmalm,Thomas Janson.Large-scale Fiedld Investigation of Grouting in Hard Jointed Rock. Grouting and Ground Treatment.2003 Grouting:1628~1639
    [48]李洪建,聂德新,傅荣华.水电站拱肩槽建基面岩体松弛带研究[J].工程地质学报,2008,16(增):525~528
    [49]董学晟.水工岩石力学[M].北京:中国水利水电出版社,2004
    [50]刘汉东,姜彤,黄志全等.岩石力学参数优选理论及应用[M].郑州:黄河水利出版社,2006
    [51]韩爱果.坝基岩体质量量化分级及图形展示—以金沙江溪洛渡水电站为例[D].成都理工大学博士论文,2002
    [52]余先华.溪洛渡水电站高拱坝两岸拱肩槽开挖后岩体工程地质评价[D].成都理工大学硕士论文,2007
    [53]丁宝晶,聂德新,傅荣华.某电站坝基破碎带密集区综合变形模量研究[J].工程地质学报,2008,16(增):556~559
    [54]刘彬.软硬相间层状岩体变形参数理论研究及工程应用[D].成都理工大学硕士论文,2006
    [55]周明军,张建海,赵文光,王仁坤.溪洛渡高拱坝坝肩(基)稳定性的三维非线性有限元分析[J].水电站设计,2006,22(3):15~19
    [56]谭光杰.金沙江虎跳峡水电站右坝肩复杂变形岩体工程效应研究[D].成都理工大学硕士论文,2004
    [57]刘翔.溪洛渡拱坝坝肩稳定分析[J].水电站设计,2008,24(2):6~9
    [58]王仁坤,林鹏.溪洛渡高拱坝建基面嵌深优化的分析与评价[J].岩石力学与工程学报,2008,27(10):2010~2018
    [59]蒋锁红.混凝土拱坝基础处理工程技术[M].北京:科学出版社,2005
    [60]李洪.岩体弹性波测试技术在李家峡水电站应用实例[J].工程物探,1995,4
    [61]李春云,刘永刚.二滩水电站拱坝基础固结灌浆效果综合分析[J].水力发电,1998,7
    [62]李春云.二滩水电站坝基固结灌浆施工状况[J].混凝土坝技术,1998,2
    [63]王文德等.用定量分析确定临江大坝建基高程[J].水力发电,1992,4
    [64]周喜德.固结灌浆质量检查方法及评价的研究[J].工程物探,2001,9
    [65]《中国大坝技术发展水平与工程实例》编委会.中国大坝技术发展水平与工程实例.中国水利水电出版社,2007,390~396

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700