用户名: 密码: 验证码:
四川盆地红层岩体渗透特性及对水利工程的控制作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
四川盆地及盆地边缘地区红层分布极为广泛,出露总面积约为16.5万km2,其中四川省境内约为12万km2,占全省总面积的25%左右。红层主要为侏罗纪和白垩纪地层,岩性较软弱,工程地质特性较差。该区内水资源时空分布不均,需要建设水利工程实现调节。已建及在建的多个水利工程存在的工程地质问题日益凸显,坝基岩体渗漏是主要问题之一。探讨四川盆地红层岩体渗透特性,对水利工程建设的可持续发展有着重要意义。
     基于四川盆地红层岩体的地形地貌、地质构造、沉积背景、地层岩性、水文地质特征,将四川盆地划分为盆西北区、盆中区、盆南区三个工程地质区。以二十一个水利工程勘察数据为依托,系统地读取了300个钻孔的4,300组数据,重点探讨了四个和岩体渗透性具有较强相关性的影响因素:岩性因素、风化因素、构造因素、易溶组分因素对渗透性的控制作用。详细分析了各水利工程和工程地质区内红层岩体的渗透特性。
     统计分析结果表明,岩体透水性与各因素之间呈现一定的规律性,各工程地质区内地质特征的差异也导致岩体渗透性在空间上分布各不相同。具体成果如下:
     (1)岩性因素为控制岩体渗透性最重要的因素。在新鲜岩体中,砂岩夹泥岩类透水率为8~12Lu,泥岩夹砂岩类透水率为2~8Lu,互层类透水率为0~5Lu,泥岩类透水率为0~1Lu。
     (2)在风化影响下,强风化岩体透水率常达到100Lu以上,弱风化岩体透水率为5~100Lu,新鲜岩体透水率多为10Lu以下。
     (3)三种源于构造作用的软弱夹层在不同岩性组合的钻孔试段中透水率范围不尽相同。在岩性组合为砂岩夹泥岩类的试段中,岩块岩屑型层间错动带透水率在10~53Lu之间,岩屑夹泥型层间错动带透水率在4~22Lu之间,泥夹岩屑型层间错动带透水率均在2~4.25Lu之间。在岩性组合为泥岩夹砂岩类的试段中,岩块岩屑型层间错动带透水率在6~29Lu之间,岩屑夹泥型层间错动带透水率在2.6~15Lu之间,泥夹岩屑型层间错动带透水率均在1~4Lu之间。在岩性组合为互层类的试段中,岩块岩屑型层间错动带透水率在5~22Lu之间,岩屑夹泥型层间错动带透水率在1.5~13Lu之间,泥夹岩屑型层间错动带透水率均在0.9~3.4Lu之间。在岩性组合为泥岩类的试段中,岩块岩屑型层间错动带透水率在2~15Lu之间,岩屑夹泥型层间错动带透水率在1.8~7Lu之间,泥夹岩屑型层间错动带透水率均在0.25~1.4Lu之间。
     (4)易溶组分溶蚀形成孔洞,造成地下水渗流量增加。易溶组分含量与岩体透水率呈正比。
     (5)盆西北区渗透特性主控因素为岩性因素和易溶组分因素,盆中区渗透特性主控因素为岩性因素和风化因素,盆南区渗透特性主控因素为岩性因素和构造因素。
     (6)建立地下水渗流有限元模型对地下水运动情况进行模拟,得出红层地区水利工程坝基岩体渗流问题的产生模式和影响程度,实现岩体渗透特性对水利工程的控制作用。
There is widespread red rock in Sichuan Basin and its marginal area. Total about 165 thousands km2 red rock is on the ground. In Sichuan Province, there is about 120 thousands km2 red rock which takes 25% of total Sichuan’s area. Most of the red rock is Jurassic and Cretaceous layer. Its lithology is soft, attribute of geological engineering is weak. Because the water resource is uneven distribution on time and space in this area, there is a demand for building water conservancy engineering to regulate it. The geology problems of the built and building water conservancy engineering have gradually come out, and foundation leakage is one major question. Study on the permeability properties of Sichuan Basin’s red rock is important for sustainable development of water conservancy engineering.
     Based on the topography, geological structure, sedimentation background, lithology, hydro-geological characteristics of Sichuan Basin Red Rock, divided Sichuan Basin to three zones: the northwest zone, the middle zone and the south zone. Relying on reconnaissance data of twenty-one water conservancy engineering, systematically read 4,300 group of data of 300 drilling holes, discussed mainly the controlling effect of four significantly correlated influencing factors of rock permeability properties: lithological factors, weathering factor, geological factors, easily dissolved component factors on permeability properties. Detailed analyzed the red rock permeability properties of each water conservancy engineering and engineering geological zone.
     The analysis shows that there’s a certain regulation between rock permeability and the factors, and the rock permeability properties are different because of the difference of geological characteristics between the engineering geological zones. Through the research, following achievements have been made:
     (1) The lithological factor is the most important controlling factor of rock permeability properties. In fresh rock, the permeable rate of sandstone intercalated with mudrock is 8~12Lu, the permeable rate of mudrock intercalated with sandstone is 2~8Lu, the permeable rate of intercalation is 0~5Lu, the permeable rate of mudrock is 0~1Lu.
     (2) Influenced by weathering factor, the permeable rate of hard weathered rock is commonly more than 100Lu, the permeable rate of soft weathered rock is 5~100Lu, and the permeable rate of fresh rock is less than 10Lu.
     (3) Three types of soft intercalations born of tectonism which are on the drilling segment with different lithological combination have different permeable rate range. On the drilling segment with sandstone intercalated with mudrock, the permeable rate of inter-laminar dislocation band of rock cuttings is 10~53Lu, the permeable rate of inter-laminar dislocation band of rock cuttings intercalated with mud is 4~22Lu, the permeable rate of inter-laminar dislocation band of mud intercalated with rock cuttings is 2~4.25Lu. On the drilling segment with mudrock intercalated with sandstone, the permeable rate of inter-laminar dislocation band of rock cuttings is 6~29Lu, the permeable rate of inter-laminar dislocation band of rock cuttings intercalated with mud is 2.6~15Lu, the permeable rate of inter-laminar dislocation band of mud intercalated with rock cuttings is 1~4Lu. On the drilling segment with intercalation, the permeable rate of inter-laminar dislocation band of rock cuttings is 5~22Lu, the permeable rate of inter-laminar dislocation band of rock cuttings intercalated with mud is 1.5~13Lu, the permeable rate of inter-laminar dislocation band of mud intercalated with rock cuttings is 0.9~3.4Lu. On the drilling segment with mudrock, the permeable rate of inter-laminar dislocation band of rock cuttings is 2~15Lu, the permeable rate of inter-laminar dislocation band of rock cuttings intercalated with mud is 1.8~7Lu, the permeable rate of inter-laminar dislocation band of mud intercalated with rock cuttings is 0.25~1.4Lu.
     (4) The holes dissolved by easily dissolved component increase the discharge of groundwater. The content of easily dissolved component is proportional to rock permeable rate.
     (5) The lithological and soluble salt factors are main controlling factors in the northwest zone, the lithological and weathering factors are main controlling factors in the middle zone, the lithological and geological factors are main controlling factors in the south zone.
     (6) Establish finite element model of groundwater seepage to simulate the movement of groundwater. Concluded the pattern and the degree of influence of the possible range of rock permeability. Achieve the control of rock permeability to water conservancy engineering.
引文
[1]张忠胤.俄罗斯台地东部上二叠系红层的成因及该地层粘土质岩石的工程地质性质[M].
    [2]В·И·奥西波夫.粘土类土和岩石的强度与变形性能的本质[M].北京:地质出版社,1985.
    [3]程强,寇小兵.中国红层的分布及地质环境特征[J].工程地质学报,2004,12(1):34-40.
    [4]曾昭璇,黄绍敏.中国自然地理地貌[M].北京:科学出版社,1980.
    [5]彭华,吴志才.关于红层特点及分布规律的初步探讨[J].中山大学学报,2003(5):109-113.
    [6]李廷勇,王建力.中国的红层及发育的地貌类型[J].四川师范大学学报,2002,25(4):428-431.
    [7]彭华.中国丹霞地貌及其研究进展[M].广州:中山大学出版社,2000.
    [8]吴志华,彭华.广东红层形成及其发育规律研究[J].热带地理2006,26(3):207-210.
    [9]万宗礼,聂德新.坝基红层软岩工程地质研究与应用[M].北京:中国水利水电出版社,2007.
    [10] MARION NICKMANN1, GEORG SPAUN, KUROSCH THURO.Engineering geological classification of weak rocks. Pre-Congress Proceedings of the 10th IAEG International Congress, Nottingham, UK, Sept. 2006, IAEG2006 Paper number 492.
    [11] ABDOLREZA TAHERIAN, MAHDI ASARI, ALIREZA FALAHAT PISHE Geoengineering aspects of the Lavarak hydropower cavern in very soft rock, Iran[A]. Pre-Congress Proceedings of the 10th IAEG International Congress[C], Nottingham, UK, Sept,2006, IAEG2006 Paper number 490.
    [12] ]MOURICE A. CZEREWKO, JOHN C. CRIPPS.The implications of diagenetic history and weathering on the engineering behaviour of mudrocks[A]. Pre-Congress Proceedings of the 10th IAEG International Congress[C], Nottingham, UK, Sept. 2006, IAEG2006 Paper number 118.
    [13] A. Tugrul. The application of rock mass classification systems to underground excavation in weak limestone, Ataturk dam, Turkey [J]. Engineering Geology 1998, 50 337-345.
    [14]刘洪特,林天健.软岩工程设计理论与工程实践[M].北京:中国建筑工业出版社,2001.
    [15]陈向荣.升钟水库坝基软弱夹层抗滑稳定的工程地质研究[A].四川省水利学会工程地质论文集[C].成都:成都科技大学出版社,1994:1-11.
    [16]陈家珍.四川盆地红色地层软弱夹层成生类型及物理力学性质初析[A].四川省水利学会工程地质论文集[C].成都:成都科技大学出版社,1994:12-19.
    [17]张倬元,聂德新等.金沙江向家坝水电站坝址岩石及软弱夹层研究[M].成都:成都科技大学出版社,1993.
    [18]聂德新,张咸恭,韩文峰.坝基岩体抗滑稳定分析中软弱夹层参数偏低的主要原因分析[A].全国第三次工程地质大会论文选集[C].成都:成都科技大学出版社,1998:332-337.
    [19]张咸恭,聂德新,韩文峰等.围压效应与软弱夹层泥化的可能性分析[J].地质评论1990,36(2):160-167.
    [20]聂德新,符文熹,任光明等.天然围压下软弱层带的工程特性及当前研究中存在的问题分析[J].工程地质学报.1999,7(4).
    [21]任光明.软弱层带夹泥的再生效应研究[D].成都:成都理工学院,1995.
    [22]胡卸文.无泥型软弱层带物理力学特征[M].成都:西南交通大学出版社,2002.
    [23]何家庆,辜明清,庞映辉等.昇钟水利工程右总干渠施工图设计阶段工程地质勘察报告附表[R].成都:四川省水利水电勘测设计院地质勘察大队,1984.
    [24]黄润秋,许模,陈剑平等.复杂岩体结构精细描述及其工程应用[M].北京:科学出版社,2004.
    [25]赵有年等.四川大地构造及其演化[M].北京:地质出版社,1984.
    [26]董崇光.四川盆地构造演化与油气聚集[M].北京:地质出版社,1992.
    [27]郭正吾,邓康龄,韩永辉等.四川盆地形成与演化[M].北京:地质出版社,1996.
    [28] R. J. Korsch,麦华召等.第30届国际地质大会论文集第8卷[C].北京:地质出版社,1999:152-163.
    [29]王金琪.四川盆地油气地特征—纪念黄汲清先生百岁诞辰[J].石油实验地质,2004,(2):115-119.
    [30]黄绍槟,程强,胡厚田.四川红层分布及工程环境特征研究[J].公路2005,(5) :81-85.
    [31] Lekhnitskii S.G. Theory of Elasticity of an Anisotropic Elastic Body [M]. San Francisco:Holdenn-Daty lnc, 1963.
    [32] Lekhnitskii S.G. Theory of Elasticity of an Anisotropic Body [M]. Moscow: Mir Publishers,1981.
    [33]刘彬.软硬相间层状岩体变形参数理论研究及工程应用[D].成都:成都理工大学,2006.
    [34]张倬元,王士天,王兰生.工程地质分析原理(第二版)[M].北京:地质出版社,1994.
    [35]孙玉科.岩体结构力学—岩体工程地质力学的新发展[J].工程地质学报. 1997,5(4).
    [36]谷德振等.岩体工程地质力学基础[M].北京:科学出版社,1979.
    [37]孙广忠.岩体结构力学[M].北京:科学出版社,1988.
    [38]李仲春.论万家寨坝基夹层抗滑稳定性地质评价[J].水利水电工程设计, 2001,20(1):2-7.
    [39]任正兰,金蕾,万学军.高坝洲水电站大坝抗滑稳定分析[J]水力发电,2002,(3):23-38.
    [40]戴会超,苏怀智.三峡大坝深层抗滑稳定研究[J].岩土力学,2006,27(4):644-647.
    [41]黄润秋,林锋,吴琦.武都水库坝基岩体深层抗滑稳定问题专题研究[R]成都:成都理工大学,2006.
    [42]韩延伦.岩体力学在工程中的应用[C].北京:知识出版社,1989.
    [43]濮声荣.近水平状砂页(泥)岩岸坡坝基渗流特征及防渗设计[J].陕西水利水电技术.2005,87(1):55-58.
    [44]卢刚,周志芳.软硬互层状岩体渗透特性研究[J].地下水,2006:28(6): 48-51.
    [45]万宗礼,聂德新.坝基红层软岩工程地质研究与应用[M].北京:中国水利水电出版社,2007.
    [46]郭正吾等.四川盆地形成与演化[M].北京地质出版社,1996.
    [47]刘杰.土的渗透稳定和渗流控制[M].北京:水利水电出版社,1992.
    [48]徐瑞春.红层与大坝[M].武汉:中国地质大学出版社,2003.
    [49]仵彦卿,张倬元.岩体水力学导论[M].成都,西南交通大学出版社,1995.
    [50]许模,黄润秋.岩体渗透特性的渗透张量分析在某水电工程中的应用[J].成都理工学院学报,1997,24(1):56~63.
    [51]周志芳,王锦国.裂隙介质水动力学[M].北京:中国水利水电出版社,2004.
    [52]张有天.岩石水力学与工程[M].北京:中国水利水电出版社,2005.
    [53]濮声荣.近水平状砂页(泥)岩岸坡坝基渗流特征及防渗设计[J].陕西水利水电技术,2005,87(1):55~58.
    [54]卢刚,周志芳.软硬互层状岩体渗透特性研究[J].地下水,2006:28(6): 48-51.
    [55]刘尚仁,黄瑞红.广东红层岩溶地貌与丹霞地貌[J].中国岩溶,1991,10(3):183-189.
    [56]王兰生,杨淑碧,胡敏惠.安县古冲积扇岩相特征及岩溶发育的某些规律[J].成都地质学院学报,1979,6(1).
    [57]魏玉峰,聂德新.第三系红层中石膏溶蚀特性及其对工程的影响[J].水文地质工程地质,2005,2:62-64.
    [58]洪文之,徐旭.西宁石膏岩工程地质性质及对建筑物适宜性的探讨[J].青海地质,1999,(1):67-70.
    [59]王子忠.砾岩岩溶与水库渗漏研究[J].四川水力发电,2003,22(2):18-20.
    [60]杨先毅.嘉陵江合川水利枢纽建坝岩体主要地质问题研究[J].水文地质工程地质,1998.3:36-37.
    [61]杨华荟.湖南红层岩溶与水库渗漏[J].湖南水利,1995,(6).
    [62]李铮,龙振金,曹建春.膨胀岩的特性分析[J].路基工程, 1997,7l(2):53-57.
    [63]张玉军,唐仪兴.李家窑膨胀岩膨胀性能的试验新究[J].岩土力学,1999,20(3):35-40.
    [64]符文熹,尚岳全,孙红月,聂德新等.岩体变形参数渐变取值模型及工程应用[J].工程地质学报,2002,10(02):198-203.
    [65]张志刚,乔春生.改进的节理岩体变形模量经验确定方法及其工程应用[J].工程地质学报.2006,14(02): 233-237.
    [66]刘彬.软硬相间层状岩体变形参数理论研究及工程应用[D].成都:成都理工大学,2006.
    [67]聂德新.岩体的场位特征及其工程应用[J].工程地质学报,2000,8(01):68-72.
    [68]李迪.软岩的变形和破坏特征[M].北京:北京工业大学出版社,1998.
    [69]何满潮,景海河,孙晓明.软岩工程力学[M].北京:科学技术出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700