用户名: 密码: 验证码:
重庆跨座式单轨车受电弓失效分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
重庆跨座式单轨车受电弓是电力机车上十分重要的部件,安装在机车两侧,主要作用是与轨道梁两侧的刚性接触网接触并受流,其安装方式不同于其它轨道交通系统。重庆单轨车的受电弓和接触网引进日本先进技术,相对于国产受电弓来说技术较成熟,但经济成本高。在使用过程中也易出现弓网故障,如断弓、刮弓、变形、弓网磨损等,其中受电弓断裂失效所造成的危害性是最为严重的,如果不及时解决这些故障问题将会带来生命危险和巨大经济损失。本文基于重庆大学与重庆市轨道交通总公司合作项目“重庆市轨道交通二号线跨座式单轨车受电弓断裂分析及有限元模拟仿真研究”,以其中一个断裂日产受电弓为研究对象,展开一系列的课题研究,为找出其断裂失效原因提供了实际依据。
     本文旨在分析单轨车受电弓在运营过程中引起断裂失效的主要原因并提出合理改进措施,防止再次发生断裂失效。由于受电弓的断裂失效情况十分复杂,在分析断裂原因时要从材料方面、断口情况、受力情况、振动情况、结构设计、环境影响、操作规范等各方面综合考虑,客观地分析其断裂原因。本文主要研究内容如下:(1)重庆单轨车受电弓结构和失效情况介绍;(2)受电弓理化检测分析和断口分析,按照国家标准制作试样并进行力学性能试验,接着进行断口宏观和微观分析;(3)受电弓三维实体模型和有限元模型的建立,便于有限元模拟仿真分析;(4)利用有限元分析软件针对受电弓在不同工作高度、承受不同接触压力情况下进行静力学分析;(5)考虑受电弓的振动特征,进行有限元振动模态分析,找出其结构上薄弱地方,并分析在振动情况下受电弓的应力应变情况和变形量大小。
     受电弓失效分析后得出以下结论并提出相关的改进措施和建议:(1)受电弓材料存在的铸造缺陷对力学性能有所影响,需要通过提高铸件材料内部质量来进一步提高其综合力学性能;(2)通过有限元静力学分析得出在正常受力情况下受电弓结构是不会发生断裂破坏,结构设计基本上满足使用要求;(3)通过有限元振动模态分析得出受电弓刚度较薄弱部位和在高频振动情况下受电弓应力应变值和变形量急剧增加,由于受电弓的激励振动频率都远离受电弓的固有频率段,因此排除了由于高频振动导致受电弓断裂失效的可能性,同时针对刚度较薄弱地方提出改进建议,确保避免出现高频振动而带来破坏;(4)受电弓断裂失效主要集中在意外冲击情况下发生的,由断口分析得出断裂的裂纹源源于铸件边缘的铸造缺陷处,如果这些铸造缺陷受到意外冲击载荷的话极易成为裂纹源,并发生断裂破坏。但是由于导致意外冲击的因素也是多样的,因此除了对受电弓进行严格检修外,与其相接触的接触网或者其它的工作部件也应该严格检修,比如在道岔处接触网与接触网过渡段之间没有平整过渡而存在尺寸上的偏差,那么受电弓在过道岔时会产生较大的冲击载荷,使受电弓断裂破坏,因此对受电弓、接触网以及其他的工作部件进行严格和及时检修是十分重要的。
Chongqing straddle type monorail vehicle pantograph is a very important component on the electric locomotive, which is installed on both sides of the locomotive, the main role of pantograph is contact the rigid catenaries which are on both sides of the track beams and current-collecting, the installation method of pantograph is different from the other rail transit system. Chongqing monorail vehicle pantograph and catenaries both apply Japanese advanced technology, and Japanese technology is more mature than the domestic technology, however, the economic costs of Japanese pantograph are high. In the process of pantograph and catenaries use prone to pantograph-catenaries breakdown, such as pantograph fracture, pantograph scratches, pantograph deformation, pantograph-catenaries wear and so on, in which the fracture failure of the pantograph is the most serious harm, if not resolve these failure issues immediately will bring life danger and huge economic losses. Based on the Chongqing University and Chongqing Rail Transit Corporation cooperation projects“The 2nd line of Chongqing rail transit straddle type monorail vehicle’s pantograph fracture failure analysis and finite element simulation studies”, one of Japanese fracture pantographes as the research object, a series of studies of this subject to find out the reasons for the fracture failure of pantograph and give some useful advices.
     This article aims to analyze the main reasons for the monorail vehicle pantograph fracture failure during work and put forward some reasonable measures to prevent the recurrence of fracture failure. Because the fracture failure of pantograph is very complicated, the analysis of fracture reasons must be considered from all aspects, such as materials, fracture situation, force situation, vibration situation, structural design, environmental factor, and operating condition, etc. The main researches in this paper as follows: (1)Introducing Chongqing monorail vehicle pantograph’s structure and fracture failure situation.(2)Physical and chemical analysis and fracture analysis of pantograph are carried out, whose test samples are made in accordance with national standards, and test results are analyzed.(3)Three-dimensional entities model and finite element model of the pantograph are established in order to prepare finite element simulation.(4)The static analysis of the pantograph under different work locations and different contact pressure are carried out by using finite element analysis software.(5)Considering the vibration characteristics of pantograph, the finite element modal analysis can identify its structural weak areas and obtain stress-strain and displacement of pantograph under vibration situation.
     The following conclusions and related improvement measures can be come from above failure analysises of pantograph: (1)There are so many casting defects in the pantograph material that mechanical properties of the pantograph become worse, the improvement of material internal quality must be needed to enhance material’s mechanical properties.(2)The structural design of pantograph is reasonable and meets the basic needs can be conclued from the static simulation analysis results, under normal circumstances, the fracture failure of the pantograph under the conventional force will not happen.(3)Through finite element vibration modal analysis of pantograph, the structural stiffness weak areas of pantograph can be found and the stress-strain and displacement values of pantograph increase dramatically with high-frequency vibration situation. Due to the incentive vibration frequency away from the natural frequency of pantograph, therefore, the possibility of high-frequency vibration lead to fracture failure of pantograph can be ruled out , but the stiffness weak areas can still be improved to avoid the destruction due to high-frequency vibration.(4) Fracture failure of pantograph may be mainly focused on the accidental impact, form the fracture analysis of pantograph can be drawn from the cracks source is on the foundry casting defects which are in the pantograph edge, if this casting defects subject to accidental impact load, they are vulnerable to become crack source and lead to fracture damage. However, there are a lot of causes of accidental impact, so in addition to the strict maintenance for pantograph, the catenaries or other work parts should also be strict maintained, such as the smooth transition between catenaries and catenaries must be ensured and there are no existence of size deviation, otherwise there is a greater impact load on the pantograph when it pass through the unsmooth transition and lead to fracture damage. Therefore, it is very important of the maintenances about pantograph-catenary and other working parts strictly and timely.
引文
[1]王省茜.跨座式单轨铁路的特点及其应用前景[J].中国铁道科学,2004,25(1):131-135.
    [2]师昌绪.材料大辞典[M].北京:化学工业出版社,1994:318.
    [3]陈南平,顾守仁,沈万慈.机械零件失效分析[M].北京:清华大学出版社,1988:16-17.
    [4]刘瑞堂.机械零件失效分析[M].哈尔滨:哈尔滨工业大学出版社,2003:1-24.
    [5]孙智,江利,应鹏展.失效分析——基础与应用[M].北京:机械工业出版社,2005:10-11.
    [6]刘民治,钟明勋.失效分析的思路与诊断[M].北京:机械工业出版社,1993:37-38
    [7] Palus A F, Nienart C A. The use of computer modeling in the interoperation of filming inhibitor mechanisms in"Computer Modeling in Corrosion"[J].edited by Raymond S M. ASTM S T Publication, 1992, 128(4):82.
    [8] Pye E, Golestaneh K. Equivalent electronic circuits computer generated from alternating- current impedance data in"Computer Modeling in Corrosion"[J].edited by Raymond S M. ASTM S.T Publication,1992,128(4):5.
    [9]安孝廉.受电器[M].北京:中国铁道出版社,1985:19-22.
    [10]张娟.现代CAD/CAE技术在受电弓设计中的应用研究[D].湖南:湖南大学,2004.
    [11]钱中良.粉末冶金电力机车受电弓滑板的研究概况[J].粉末冶金工业,2007,17(4):43-46.
    [12]杨祖德.机械复合式受电弓滑板应用研究[J].机车电传动,1995,(3):26-29.
    [13] Hiroki Nagasawa, Koji Kato. Wear mechanism of copper alloy wire sliding against iron base strip under electric current [J]. Wear, 1998, 216:179-182.
    [14]谢风华.跨座式单轨接触网结构设计[J].现代城市轨道交通,2005,(4):12-14.
    [15]赖志强.电气化铁路弓网故障分析及对策[J].上海科技铁道科技,1999,(1): 23-25.
    [16]何宏叶.接触网硬点形成原因及减少接触网硬点产生的建议[J].上海铁道科技,2008, (3):54-56.
    [17]黄积荣.铸造合金金相图谱[M].北京:机械工业出版社,1980:202.
    [18]钟群鹏,赵子华.断口学[M].北京:高等教育出版社,2006:50-52.
    [19]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社,1998:30-31.
    [20]何德芳,李力.失效分析与故障预防[M].北京:冶金工业出版社,1990:31.
    [21]涂铭旌.机械零件的失效与预防[M].北京:高等教育出版社,1993:142-145.
    [22]刘正义,吴连生,许麟康,张静江.机械装备失效分析图谱[M].广州:广东科技出社,1990:345.
    [23] Jambor A, Beyer M. New cars-new materials [J].Materials and Design, 1997, 18 (4): 203-209.
    [24] Miller W S, etal. Recent development in aluminum alloys for the automotive industry [J]. M at Sci Eng A, 2000, 208:37-49.
    [25] Mayer H, etal. Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys [J]. Int J Fatigue, 2003, 25: 245-256.
    [26] Wang Q G, Apelian D, Lados D A. Fatigue behaviorofA356-T6 aluminum cast alloys. Part I Effect of casting defects [J].Journal of Light Metals, 2001(1): 73-84.
    [27] Avalle M, etal. Casting defects and fatigue strength of a die cast aluminum alloy: comparison between standard specimens and production components [J]. Int J Fatigue, 2002, 24: 1-9.
    [28]武恭,姚良均,李振夏,等.铝及铝合金材料手册[M].北京:科学出版社1994:294-297.
    [29] Z Y Ma, R S Mishra, M W Mahoney. Super plasticity in cast A356 induced via friction stir processing [J].Script Materialia, 2004, (50):931-935.
    [30] Kwai S Chan, Peggy Jones, Qigui Wang. Fatigue crack growth and fracture paths in sand cast B319 and A356 aluminum alloys[J]. Materials science and Engineering, 2003, 341(1-2):18-34.
    [31] Mayer H, etal. Int J Fatigue, 2003, 25:245.
    [32]黄标.基于虚拟样机技术的受电弓-接触网系统的研究[D].四川:西南交通大学,2004.
    [33]孙立星.有限元分析在摩托车车架设计中的应用[D].天津:天津大学,2006.
    [34] Argyris J H. Energy Theory and Structural Analysis. Aircraft Engineering, 1955, (27):125-154.
    [35] Turner M J, Clough R J, Martin H C etal. Stiffness and Deflection Analysis of Complex Structures [J]. Journal of Aeronautical Sciences, 1956, 3 (2): 805-823.
    [36] Turner M J, Dill E H, Martin H C etal. Large Deflections of Structures Subjected to Heating and External Loads [J]. Jouranl of Aerospace Sciences, 1960, (27):97-106.
    [37]吴仁恩.基于ANSYS的铝合金车体结构有限元分析研究[D].北京:北京交通大学,2008.
    [38]周建兴.客车车身整体骨架强度与局部应力集中分析[D].湖北:武汉理工大学,2004.
    [39] Erdel Bett P. New. Dimensions in Manufacturing [M]. USA Cincinnati: Hanser Gardner Publications, 1998:11-13.
    [40]史福明,李遂生.有限元程序分析系统与桥梁设计应用[J].河南交通科技,1994; (1):39-43.
    [41]马秋成,韩利芬,罗益宁,谢瑛.UG CAE篇[M].北京:机械工业出版社,2002:7-11.
    [42]董华明.弯板链链板有限元计算的研究[J].机械传动,1995, (3): 5-8.
    [43]刘百洲,利用Super SAP进行客车车身结构的有限元分析[J].客车技术与研究,1994, (2):92-97.
    [44]耿鲁怡,徐六飞.UG结构分析培训教程[M].北京:清华大学出版社,2005:30-50.
    [24] Miller W S, etal. Recent development in aluminum alloys for the automotive industry [J]. M at Sci Eng A, 2000, 208:37-49.
    [25] Mayer H, etal. Influence of porosity on the fatigue limit of die cast magnesium and aluminum alloys [J]. Int J Fatigue, 2003, 25: 245-256.
    [26] Wang Q G, Apelian D, Lados D A. Fatigue behaviorofA356-T6 aluminum cast alloys. Part I Effect of casting defects [J].Journal of Light Metals, 2001(1): 73-84.
    [27] Avalle M, etal. Casting defects and fatigue strength of a die cast aluminum alloy: comparison between standard specimens and production components [J]. Int J Fatigue, 2002, 24: 1-9.
    [28]武恭,姚良均,李振夏,等.铝及铝合金材料手册[M].北京:科学出版社1994:294-297.
    [29] Z Y Ma, R S Mishra, M W Mahoney. Super plasticity in cast A356 induced via friction stir processing [J].Script Materialia, 2004, (50):931-935.
    [30] Kwai S Chan, Peggy Jones, Qigui Wang. Fatigue crack growth and fracture paths in sand cast B319 and A356 aluminum alloys[J]. Materials science and Engineering, 2003, 341(1-2):18-34.
    [31] Mayer H, etal. Int J Fatigue, 2003, 25:245.
    [32]黄标.基于虚拟样机技术的受电弓-接触网系统的研究[D].四川:西南交通大学,2004.
    [33]孙立星.有限元分析在摩托车车架设计中的应用[D].天津:天津大学,2006.
    [34] Argyris J H. Energy Theory and Structural Analysis. Aircraft Engineering, 1955, (27):125-154.
    [35] Turner M J, Clough R J, Martin H C etal. Stiffness and Deflection Analysis of Complex Structures [J]. Journal of Aeronautical Sciences, 1956, 3 (2): 805-823.
    [36] Turner M J, Dill E H, Martin H C etal. Large Deflections of Structures Subjected to Heating and External Loads [J]. Jouranl of Aerospace Sciences, 1960, (27):97-106.
    [37]吴仁恩.基于ANSYS的铝合金车体结构有限元分析研究[D].北京:北京交通大学,2008.
    [38]周建兴.客车车身整体骨架强度与局部应力集中分析[D].湖北:武汉理工大学,2004.
    [39] Erdel Bett P. New. Dimensions in Manufacturing [M]. USA Cincinnati: Hanser Gardner Publications, 1998:11-13.
    [40]史福明,李遂生.有限元程序分析系统与桥梁设计应用[J].河南交通科技,1994; (1):39-43.
    [41]马秋成,韩利芬,罗益宁,谢瑛.UG CAE篇[M].北京:机械工业出版社,2002:7-11.
    [42]董华明.弯板链链板有限元计算的研究[J].机械传动,1995, (3): 5-8.
    [43]刘百洲,利用Super SAP进行客车车身结构的有限元分析[J].客车技术与研究,1994, (2):92-97.
    [44]耿鲁怡,徐六飞.UG结构分析培训教程[M].北京:清华大学出版社,2005:30-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700