用户名: 密码: 验证码:
宁夏六盘山主要树种及典型森林植被的水分利用效率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对我国温带干旱缺水区林水矛盾的问题,本文以六盘山区几种典型森林植被为研究对象,在半湿润气候的香水河小流域和半干旱气候的叠叠沟小流域,采用稳定性碳同位素技术及树木年轮测定仪、树干径向变化记录仪和SF-L树干液流仪等仪器,通过估算典型植被叶片的13C、生物量与生产力以及耗水,研究了六盘山主要森林植被水分利用效率(WUE)的部位、种间、生活型和水分生境等方面的差异及不同时间(年内、年际)的变化规律,同时在个体和林分尺度上分析了主要环境因子对WUE的影响。本研究结果将有助于系统认识森林植被WUE的特征和变化规律,在半干旱地区植被建设中的节水树种选择、树种合理配置和森林经营管理措施制定等方面具有一定的指导意义。本论文的主要结论如下:
     1.主要树种叶片水平上的水分利用效率
     华北落叶松、油松、华山松、辽东栎、少脉椴、白桦、沙棘和山桃8个六盘山主要树种的稳定性碳同位素技术研究表明:同一树种的叶片WUE存在冠层部位差异,但各树种表现各异。华北落叶松、白桦和油松表现为:上部>中部>下部;而华山松和辽东栎为:下部>上部>中部。香水河小流域各树种叶片的WUE分布范围为3.62~7.09mmol/mol,平均值为5.35(±0.66)mmol/mol;叠叠沟小流域各树种叶片WUE分布范围是10.42~13.14mmol/mol,平均为11.47(±0.88)mmol/mol;香水河小流域各树种叶片WUE的大小顺序为:油松>山桃>沙棘>辽东栎>华北落叶松>华山松>少脉椴>白桦;不同生活型树木叶片WUE基本上呈现出灌木>小乔木>常绿针叶树>落叶针叶树>落叶阔叶树的变化规律。8个树种叶片WUE在生长季初期较高,而在生长季中、后期较低,但季节变化幅度随树种而异。不同水分生境下的华北落叶松、山桃和沙棘等三种树种叶片WUE都存在着明显的种内个体差异,但总体上呈现出半干旱区主要树种叶片WUE极显著地(P<0.01)大于半湿润区的趋势。
     2.主要树种个体水平上的水分利用效率——以华北落叶松为例
     在生长季内,华北落叶松个体WUE与蒸腾量的变化表现一致,均为先略有升高后下降的变化规律,6月份最高。个体WUE在0.88~9.73g/kg之间,平均值为3.97g/kg,6月份的WUE最大。除空气湿度外,华北落叶松个体水平的WUE与太阳辐射、降水、温度、风速等气象因子都呈现出正相关关系,但与太阳辐射和潜在蒸发散达到显著性相关。
     3.典型植被群落水平的水分利用效率
     1)华北落叶松林的WUETr(生物量增量/蒸腾量)和WUEET(生物量增量/蒸散量)在初期最高,然后持续降低;降水利用效率(RUE)的变化规律是先略有升高后下降。华北落叶松林三种不同表达形式的WUE变化幅度存在差异。其中,WUETr在0.016~14.373g·m~(-2)·mm~(-1)变化,均值为5.72g·m~(-2)·mm~(-1),整个生长季WUETr为6.933g·m~(-2)·mm~(-1);WUEET在0.008~10.718g·m~(-2)·mm~(-1)之间,平均为3.84g·m~(-2)·mm~(-1),整个生长季WUEET为4.035g·m~(-2)·mm~(-1);RUE变化幅度是0.002~5.126g·m~(-2)·mm~(-1),均值为1.81g·m~(-2)·mm~(-1),整个生长季RUE为1.787g·m~(-2)·mm~(-1)。
     2)华山松林RUE的年际变化表现出“快速上升-缓慢上升-缓慢下降”趋势,但年际之间的波动幅度存在差异;而华北落叶松林和油松林的RUE呈现出波动快速上升的趋势。华北落叶松林和油松林与华山松林的RUE存在极显著差异(P<0.01),但华北落叶松林和油松林的差异不显著。多年平均RUE(g·m~(-2)·mm~(-1))的大小依次为:华北落叶松林(1.12)>油松林(0.97)>华山松林(0.45);华北落叶松人工林的RUE年际变异最大(0.54),华山松林次之(0.45),油松林最小(0.41)。
     三种针叶林的RUE受降水量年内分配格局的影响。华山松天然林的RUE与上年8月降水量呈显著正相关,与当年9~11月降水量呈显著或极显著负相关;华北落叶松和油松林的RUE与上年9月降水量显著正相关,与当年4月降水量显著负相关,且华北落叶松林的RUE还与当年9月降水量显著正相关。华北落叶松和油松林的RUE与大多月份温度成正比,而华山松林的RUE与大多月份温度成反比。3、6月份温度显著或极显著的影响三种针叶林的RUE,6月温度还影响上年的RUE;华山松与2月月均温和月最高温度呈显著性负相关;华北落叶松林的RUE与4、5月份的温度呈显著正相关,而油松林的RUE与4月温度、5-8月份最低温极显著相关。华山松林的RUE与3月份的湿度极显著正相关,而华北落叶松和油松林的RUE与4月空气湿度显著负相关。
     4.几点认识
     1)随年降水量的增加,华山松林的RUE逐渐减小,而华北落叶松林和油松林的RUE均先略有升高后降低;在湿润年份,三种林分的RUE趋向于相同的最小值;而在干旱年份,三种林分也趋向于相同的RUE,但不一定是最大值。
     2)树木WUE随着研究尺度的扩大呈递减的趋势,这可能与光合产物和水分的无效消耗增多有关。同时,不同尺度影响WUE的关键环境因子不同。因此,在实践生产中要综合分析不同尺度上WUE及其主导环境因子,可能才能做到适地适树的原则。
     3)沙棘、山桃、油松和华北落叶松等4个人工主要造林树种在干旱条件和湿润条件下都具有较高的叶片WUE,是具有较高的抗旱能力的生态型节水树种,在干旱缺水地区可选为主要的造林树种。同时,不同的水分生境下,灌木和小乔木的WUE均大于乔木的,故干旱缺水区可适当减少乔木比例;树木的WUE具有保守性和变异性,可采取适度的抗旱锻炼等措施提高造林树种的WUE。
Based on the measurements of vegetation structure, stable carbon isotope, dendrometer,sap flow and tree ring width, we measured the leaf13C, biomass, productivity, transpirationand evapotranspiration of dominant tree species to calculate water use efficiency (WUE) atleaf-, tree-and stand scales in2010in the south (Xiangshuihe Watershed, semi-humid area)and north (Diediegou Watershed, semi-arid area) of Liupanshan Mountain, Ningxia. Thevariations in temporal and spatial heterogeneity of WUE were analyzed, we also analyzed howWUE responds to climate change at different scales. This study is helpful to systematicunderstand the variation characteristics of WUE, and to select tree species for the afforestaionand recovery of forest vegetation in the semi-arid and semi-humid area, and to offer scientificguidance for the harmonious and integrated management of forest and water. The mainconclusions were as follows:
     1. Leaf level of water use efficiency
     Leaf WUE of Larix principris-rupprechtii, Betula platyphylla, Pinus tablaeformisincreased with increasing canopy height, but the leaf WUE in the low canopy of Pinusarmandii and Quercus liaotungensis were higher compared with those of the mid-and upperparts in the canopy. The range of leaf WUE values was3.62~7.09mmol/mol, with the average5.35(±0.66)mmol/mol in Xiangshuihe Watershed, and10.42~13.14mmol/mol, with average11.47(±0.88)mmol/mol in Diediegou Watershed. The order of mean WUE of each treespecies is as P. tablaeformis>Prunus davidiana>Hippophae rhamnoides>Q. liaotungersis>L. principis-rupprechtii>P. armandii>Tilia panciostata>B. Platyphylla. The leaf WUEfor life forms were significantly different, with a sequence of shrubs>evergreen trees>leavedtrees.The leaf WUE of species flucutated with the time during the growing season, beingrelatively higher WUE in the early stage than that in the middle and late phases. The leaf WUEamong individual trees of L. principris-rupprechtii, P. davidiana and H. rhamnoides in twodifferent water-environmental regions were significantly different during the growing season,IV and semi-arid area with the higher values. It showed that the ability of water use efficiency ofthe same tree species could be improved through long-term adaptation to drought.
     2. Individual level of water use efficiency
     The seasonal pattern of WUE value of individual tree of L. principis-rupprechtii exhibitedan initial increase and a subsequent decrease, the value ranged from0.88to9.73g/kg duringgrowing season in2010, having the maximum in June. The growing season WUE is4.85g/kg.Individual level of water use efficiency of L. principis-rupprechtii was mainly affected by solarradiation and the potential evaporation. WUE exhibited positive associations with precipitation,temperature and wind speed, except air humidity.
     3. Estimation of water use efficiency at stand level
     1) The WUETr(Productivity/Transpiration) and WUEET(Productivity/Evapotranspiration)of L.principis-rupprechtii plantation had higher values in the early stage of growing seasonthan that in the middle and late phases. The RUE(Productivity/Precipitation) values ofL.principis-rupprechtii plantation exhibited an initial increase and a subsequent decrease. TheWUETrvalues ranged from0.016to14.373g·m~(-2)·mm~(-1), and the WUEETvalues ranged from0.008to10.718g·m~(-2)·mm~(-1), and the RUE values ranged from0.002to5.126g·m~(-2)·mm~(-1).
     2) The interannual changes of RUE of P.armandii natural forest exhibited “fast increase-slow increase-slow decrease”, but variation amplitude was different. The interannual changesof RUE of L.principis-rupprechtii and P.tablaeformis plantations showed rapid rising trendwith fluctuations, and the greater fluctuations in L.principis-rupprechtii plantation. The RUEof two artificial forests and natural forest had extremely remarkable difference, with the orderof L.principis-rupprechtii plantation(1.12t· hm~(-2)·a~(-1))>P.tablaeformis plantation(0.97t·hm~(-2)·a~(-1))>P.armandii Natural Forest(0.45t·hm~(-2)·a~(-1)). The coefficient of variation in RUEwas as L.principis-rupprechtii plantation(0.54)>P.armandii natural forest(0.45)>P.tablaeformis plantation(0.41).
     The RUE of P.armandii natural forest was significantly positively correlated withprecipitation in August of the previous year and that from September to November of thecurrent year, but the RUE of two artificial forests was significantly positively correlated with precipitation in September of the previous year and negatively correlated with precipitation inApril of the current year, and the productivity of L.principis-rupprechtii plantation was alsosignificantly positively correlated with precipitation in September of the current year. So theRUE of the three forests was affected by the distribution pattern of precipitation during theyear.Most of monthly temperature negatively affected the RUE of P.armandii natural forest,but positively affected the RUE of two artificial forests, and the RUE values of three forestswas significantly correlated with temperature in June of the previous year and that in Marchand June of the current year. There were significantly negative correlations between RUE ofP.armandii Natural Forest and mean and minimum temperature in February, and the RUE ofL.principis-rupprechtii plantation was also significantly correlated with mean-and minimum-temperature in April and May of the current year, but P.tablaeformis plantation wassignificantly correlated with mean temperature in April and minimum temperature from May toAugust of the current year.There were significantly correlations between RUE of P.armandiinatural forest and mean humidity in March, and that between productivity of artificial forestand mean humidity in April.
     4. Some innovative viewpoint in the WUE research
     1) we showed that RUE of P.armandii forest decreases as mean annual precipitationincreases, but RUE of L.principis-rupprechtii and P.tablaeformis plantation increased at firstand then decreased. During the driest years, there was convergence to common RUE that wastypical of three coniferous tree plantions, but in most moisture years, all forests exhibited thesame minimum rate of biomass production per unit rainfall.
     2) With the expansion of the research scale, the WUE of trees showed a decreasing trend,and was affected by different environmental factors. In forest management, we shouldcomprehensive analysis the WUE and its impact factors at different scales to select suitabletree species in the afforestaion and recovery of forest vegetation.
     3) The L. principis-rupprechtii, P. tablaeformis, P. davidiana and H. rhamnoides that hadhigher WUE values whether they were in dry condition or wet conditions, were ecologicalwater-saving species, having high drought tolerance, so they can be chosen as the main afforestation tree for vegetation restoration and construction in arid and semi-arid regions.Secondly, the WUE values of shrubs and small trees were more than trees in different waterconditions, so we could rationally configure the proportion of different tree species. The WUEof trees had the characteristics of conservative and variability, so moderate drought exercisemeasures could be taken to improve the WUE of tree species in afforestations.
引文
Akhter J, Mahmood K, Tasneem M A, et al. Water-use efficiency and carbon isotope discrimination ofAcacia ampliceps and Eucalyptus camaldulensis at different soil moisture regimes under semi-aridconditions. Biologia Plantarum,2005,49(2):269~272.
    Andreassen K, Solberg S, Tveito O E, et al. Regional differences in climatic responses of Norway spruce(Picea abies L. Karst) growth in Norway. Forest Ecology and Management,2006,222(1-3),211~221.
    Bai Y F, Wu J G, Xing Q, et al. Primary production and rain use efficiency across a precipitaion gradient onthe Mongolia Plateau. Ecology,2008,89(8):2140~2153.
    Baldocchi D. A comparative study of mass and energy exchange over a closed C3(wheat) and an open C4(corn) crop: II.CO2exchange and water use efficiency.Agricultural and Forest Meteorology,1994,67(3-4):291~321.
    Battipaglia G, Saurer M, Cherubini P, et al. Tree rings indicate different drought resistance of a native (Abiesalba Mill.) and a nonnative (Picea abies L. Karst.) species co-occurring at a dry site in Southern Italy.Forest Ecology and Management,2009,257(3):820~828.
    Boisvenue C, Running S W. Impacts of climate change on natural forest productivity–evidence since themiddle of the20th century. Global Change Biology,2006,12(5):862~882.
    Brooks J R, Flanagan L B, Varney G T, et al. Vertical gradients in photosynthetic gas exchangecharacteristics and reification of respired CO2within boreal forest canopies. Tree Physiology,1997,17(1):1~12.
    Casper B B, Forseth I N, Wait D A.Variation in carbon isotope discrimination in relation to plantperformance in a natural population of Cryptantha flava. Oecologia,2005,145(4):541~548.
    Chartzoulakis K, Patskas A, Kofidis G, et al.Water stress affects leaf anatomy, gas exchange, water relationsand growth of two avocado cultivars. Scientia Horticulturae,2002,95(1-2):39~50.
    Cui N B, Du T S, Kang S Z, et al. Relationship between stable isotope discrimination and water useefficiency under regulated deficit irrigation of pear-jujube tree. Agricultural Water Management,2009,96(11):1615~1622.
    D’Arrigo R D, Kaufmann R K, Davi N, et al. Thresholds for warming-induced growth decline at elevationaltree line in the Yukon Territory, Canada. Global Biogeochemical Cycles,2004,18, GB3021, doi:10.1029/2004GB002249.
    Donovan L A, Dudley S A, Rosenthal D M, et al. Phenotypic selection on leaf water use efficiency andrelated ecophysiological traits for natural populations of desert sunflowers. Oecologia,2007,152(1):13~25.
    Driscoll W W, Wiles G C, D’Arrigo R D, et al. Divergent tree growth response to recent climatic warming,Lake Clark National Park and Preserve, Alaska. Geophysical Research Letters,2005,32, L20703, doi:10.1029/2005GL024258.
    Du S, Yamanakab N, Yamamotoa F, et al. The effect of climate on radial growth of Quercus liaotungensisforest trees in Loess Plateau, China. Dendrochronologia,2007,25(1):29~36.
    Duursma R A, Marshall JD. Vertical canopy gradients in13C correspond with leaf nitrogen content in amixed-species conifer forest. Trees,2006,20(4):496~506.
    Ehleringer J R, Cooper T A. Correlations between carbon isotope ratio and microhabitat in plants. Oecologia,1988,76(4):562~566.
    Farquhar G D, Ehleringer J R, Hubick K T. Carbon isotope discrimination and photosynthesis. AnnualReview of Plant Physiology and Plant Molecular Biology,1989,40(1):503~537.
    Farquhar G D, O’Leary M H, Berry J A. On the relationship between carbon isotope discrimination and theintercellular carbon dioxide concentration in leaves. Australian Journal of Plant Physiology,1982,9(2):121~137.
    Forrester D I, Theiveyanathan S, Collopy J J, et al. Enhanced water use efficiency in a mixed Eucalyptusglobulus and Acacia mearnsii plantation. Forest Ecology and Management,2010,259(9):1761~1770.
    Gao Y Z, Chen Q, Lin S, et al. Resource manipulation effects on net primary production, biomass allocationand rain use efficiency of two semiarid grassland sites in Inner Mongolia,China. Oecologia,2011,165(4):855~864.
    Garten Jr C T, Taylor Jr G E. Foliar13C within a temperate deciduous forest:spatial, temporal, and speciessources of variation. Oecologia,1992,90(1):1~7.
    Goldblum D, Rigg L S. Tree growth response to climate change at the deciduous-boreat forest ecotone,Ontario, Canada. Canadian Journal of Forest Research,2005,35(11):2709~2718.
    Grunzweig J M, Lin T, Rotenberg E, et a1. Carbon sequestration in arid-land forest. Global Change Biology,2003,9(5):791~799.
    Gu S, Tang Y, Cui X., et al. Energy exchange between the atmosphere and a meadow ecosystem on theQinghai-Tibetan Plateau. Agricultural and Forest Meteorology,2005,129(3-4):175~185.
    Gulías J, Flexas J, Mus M, et al. Relationship between maximum leaf photosynthesis, nitrogen content andspecific leaf area in Balearic endemic and non-endemic Mediterranean species. Annals of Botany,2003,92(2),215~222.
    Gyenge J, Fern Ndez M A E, Sarasola M, et al. Testing a hypothesis of the relationship between productivityand water use efficiency in Patagonian forests with native and exotic species[J]. Forest Ecology andManagement,2008,255(8-9):3281~3287.
    Hanba Y T, Mori S, Lei T T, et al. Variations in leaf13C along a vertical profile of irradiance in a temperateJapanese forest. Oecologia,1997,110(2):253~261.
    Handley T, Grulke N E. Interactive effects of O3exposure on California black oak (Quercus kelloggii Newb.)seedlings with and without N amendment. Environmental Pollution,2008,156(1):53~60.
    Hastings S J, Oechel W C, Muhlia-melo A. Diurnal, seasonal and annual variation in the net ecosystem CO2exchange of a desert shrub community (Sarcocaulescent) in Baja California, Mexico. Global ChangeBiology,2005, l1(6):927~937.
    Hu Z M, Yu G R, Fan H P, et al. Precipitation-use efficiency along a4500-Km grassland transect. GlobalEcology and Biogeography,2010,19(6):842~851.
    Hu Z M, Yu G R, Fu Y L, et a1. Effects of vegetation control on ecosystem water use efficiency within andamongst four grassland ecosystems in China.Global Change Biology,2008,14(7):1609~1619.
    Hubbard R M, Stape J, Ryan M G, et al. Effects of irrigation on water use and water use efficiency in twofast growing Eucalyptus plantations. Forest Ecology and Management.2010,259(9):1714~1721.
    Hui D F, Luo Y Q, Cheng W X, et a1. Canopy radiation-and water-use efficiencies as affected by elevated[CO2]. Global Change Biology,2001,7(1):75~91.
    Hui D F, Wang J, Le X, et al. Influences of biotic and abiotic factors on the relationship between treeproductivity and biomass in China, Forest Ecology and Management,2012,264:72~80.
    Hunt J E, Kelliher F M, McSeveny T M, et a1. Evaporation and carbon dioxide exchange between theatmosphere and a tussock grassland during a summer drought. Agricultural and Forest Meteorology,2002,111(1):65~82.
    Huxman T E, Smith M D, Fay P A, et al. Convergence across biomes to a common rain-use efficiency.Nature,2004,429(6992):651~654.
    Keeling H C, Phillips O L. The global relationship between forest productivity and biomass. Global Ecologyand Biogeography,2007,16(5):618~631.
    Keitel C, Matzarakis A, Rennenberg H, et al. Carbon isotopic composition and oxygen isotopic enrichmentin phloem and total leaf organic matter of European beech (Fagus sylvatica L.) along a climate gradient.Plant, Cell&Environment,2006,29(8):1492~1507.
    Kloeppel B D, Gower S T, Treichel I W, et al. Foliar carbon isotope discrimination in Larix species andsympatric evergreen conifers: a global comparison. Oecologia,1998,114(2):153~159.
    Knapp A K, Smith M D. Variation among biomes in temporal dynamics of aboveground primary production.Science,2001,291(5503):481~484.
    Koch G W, Sillett S C, Jennings G M, et al. The limits to tree height. Nature,2004,428:851~854.
    Kume A,Satomura T,Tsuboi N,et al. Effects of understory vegetation on ecophysiological characteristicsof an overstory pine, Pinus densiflora. Forest Ecology and Management,2002,176(1-3):195~203.
    Lauenroth W K, Burke I C, Paruelo J M. Patterns of production and precipitation-use efficiency of winterwheat and native grasslands in the Central Great Plains of the United States. Ecosystems,2000,3(4):344~351.
    Law B E, Falge E, Gu L H, et al. Environmental control over carbon dioxide and water vapor exchange ofterrestrial vegetation. Agricultural and Forest Meteorology,2002,113(1):97~120.
    Le Houerou H. N, Bingham R L, Skerbek W. Relationship between the variability of primary production andthe variability of annual precipitation in world arid lands. Journal of Arid Environments,1988,15(1):1~18.
    Le Houerou, H. N. Rain use efficiency: a unifying concept in arid-land ecology. Journal of AridEnvironments,1984,7(3):213~247.
    Li J H, Erickson J E, Peresta G, et al. Evapotranspiration and water use efficiency in a Chesapeake Baywetland under carbon dioxide enrichment. Global Change Biology,2010,16(1):234~245.
    Li M C, Liu H Y, Yi X F, et al. Characterization of photosynthetic pathway of plant species growing in theeastern Tibetan plateau using stable carbon isotope composition. Photosynthetica,2006,44(1),102~108.
    Liu C M, Zhang X Y, Zhang Y Q. Determination of daily evaporation and evapotranspiration of winter wheatand maize by large-scale weighing lysimeter and micro-lysimeter. Agricultural and Forest Meteorology,2002, l11(2):109~120.
    Loader N, Switsur V, Field E. High-resolution stable isotope analysis of tree rings: Implications of‘microden-droclimatology’ for palaeoenvironmental research. The Holocene,1995,5:457~460.
    Malhi Y, Baker T R, Phillips O L, et al. The above-ground coarse wood productivity of104Neotropicalforest plots. Global Change Biology.2004,10(5):563~591.
    Marshall J D, Zhang J W. Carbon isotope discrimination and water-use efficiency in native plants of thenorth-central Rockies. Ecology,1994,75(7):1887~1895.
    Martin B, Thorstenson Y R. Stable Carbon Isotope Composition(13C), Water Use Efficiency, and BiomassProductivity of Lycopersicon-esculentum, lycopersicon-pennellii, and the F1Hybrid. Plant Physiol,1988,88(1):213~217.
    Martín-Benito D, Río M D, Heinrich I, et al. Response of climate-growth relationships and water useefficiency to thinning in a Pinus nigra afforestation [J]. Forest Ecology and Management,2009,259(5):967~975.
    McCarroll D, Pawellek F. Stable carbon isotope ratios of Pinus sylvestris from northern Finland and thepotential for extracting a climate signal from long Fennoscandian chronologies. The Holocene,2001,11(5):517~526.
    Merah O, Deléens E, Souyris I, et al. Ash content might predict carbon isotope discrimination and grainyield in durum wheat. New Phytologist,2001,149(2):275~282.
    Miyamoto Y, Griesbauer H P, Green D S. Growth responses of three coexisting conifer species to climateacross wide geographic and climate ranges in Yukon and British Columbia. Forest Ecology andManagement,2010,259(3):514~523.
    Nagel LM, O’Hara KL. Diurnal fluctuations of gas exchange and water potential in different stand structuresof Pinus ponderosa. Trees,2002,16(4-5):281~290.
    Naidu S L, Sullivan J H, Teramura A H, et al. The effects of ultraviolet-B radiation on photosynthesis ofdifferent aged needles in field-grown loblolly pine (Pinus taeda)[J].Tree physiology,1993,12(2):151~162.
    Ni J. Forest productivity of the Altay and Tianshan Mountains in the dryland, northwestern China, ForestEcology and Management,2004,202(1-3):13~22.
    Nicotra A B, Cosgrove M J, Cowling A, et al. Leaf shape linked to photosynthetic rates and temperatureoptima in South African Pelargonium species. Oecologia,2008,154(4):625~635.
    Niinemets ü, Tenhunen J D, Beyschlag W. Spatial and age-dependent modifications of photosyntheticcapacity in four Mediterranean oak species. Functional Plant Biology,2004,31(12):1179~1193.
    Ohte N, Koba K, Yoshikawa K, et al. Water Utilization of Natural and Planted Trees in the Semiarid Desertof Inner Mongolia, China. Ecological Applications,2003,13(2):337~351.
    Pearman G I, Francey R J, Fraser P J B. Climatic implications of stable carbon isotopes in tree rings. Nature,1976,260:771~773.
    Pederson N, Cook E R, Jacoby G C, et al. The influence of winter temperatures on the annual radial growthof six northern-range-margin tree species. Dendrochronologia,2004,22:7~9.
    Pe uelas J, Filella I, LlusiàJ, et al. Comparative field study of spring and summer leaf gas exchange andphotobiology of the mediterranean trees Quercusi lex and Phillyrea latifolia. Journal of ExperimentBotany,1998,49(319):229~238.
    Peuke A D, Gessler A, Rennenberg H. The effect of drought on C and N stable isotopes in different fractionsof leaves, stems and roots of sensitive and tolerant beech ecotypes. Plant, Cell&Environment,2006,29(5):823–835.
    Ponton S, Flanagan L B, Alstad K, et al. Comparison of ecosystem water-use efficiency among Douglas-firforest, aspen forest and grassland using eddy covariance and carbon isotope techniques. Global ChangeBiology,2006,12(2):294~310.
    Powers M D, Pregitzer K S, Palik B J, et al. Water relations of pine seedlings in contrasting overstoryenvironments. Forest Ecology and Management,2009,258(7),1442~1448.
    Raich J W, Russell A E, Kitayama K, et al. Temperature influences carbon accumulation in moist tropicalforests. Ecology,2006,87(1):76~87.
    Saurer M, Siegwolf R, Schweingruber F. Carbon isotope discrimination indicates improving water-useefficiency of trees in northern Eurasia over the last100years. Global Change Biology,2004,10(12):2109~2120.
    Scanlon T M,Albertson J D. Canopy scale measurements of CO2and water vapor exchange along aprecipitation gradient in southern Africa. Global Change Biology,2004,10(3):329~341.
    Schulze E D, Williams R J, Farquhar G D, et al. Carbon and nitrogen isotope discrimination and nitrogennutrition of trees along a rainfall gradient in northern Australia. Australian Journal of Plant Physiology,1998,25(4):413~425.
    Shan Y F, Feng Z W,Izuta T, et al. The individual and combined effects of ozone and simulated acid rainon growth, gas exchange rate and water-use efficiency of Pinus armandi Franch. EnvironmentalPollution,1996,91(3):355-361.
    Shim J H, Pendall E, Morgan J A, et al. Wetting and drying cycles drive variations in the stable carbonisotope ratio of respired carbon dioxide in semi-arid grassland. Oecologia,2009,160(2):321~333.
    Sparks J P, Ehleringer J R.Leaf carbon isotope discrimination and nitrogen content for riparian trees alongelevational transects[J].Oecologia,1997,109(3):362~367.
    Stewart G R, Turnbull M H, Schmidt S, et al.13C natural abundance in plant communities along a rainfallgradient:A biological integrator of water availability.Australian Journal of Plant Physiology,1995,22(1):51~55.
    Sun B N, Dilcher D L, Beerling D J, et al.Variation in Ginkgo Biloba L. Leaf Characters Across a ClimaticGradient in China[J]. PNAS,2003,100(12):7141~7146.
    Tanaka-Oda A, Kenzo T, Koretsune S, et al. Ontogenetic changes in water-use efficiency (13C) and leaftraits differ among tree species growing in a semiarid region of the Loess Plateau, China. ForestEcology and Manage,2010,259(5):953~957.
    Warren C R. Why does photosynthesis decrease with needle age in Pinus pinaster? Trees,2006,20(2),157~164.
    Woodruff D R, Mcculloh K A, Warren J M, et al. Impacts of tree height on leaf hydraulic architecture andstomatal control in Douglas-fir. Plant, Cell and Environment,2007,30(5):559~569.
    Wright G C,Nageswara Rao R C,Farquhar G D.Water-use efficiency and carbon isotope discrimination inpeanut under water deficit conditions. Crop Science,1994,34(1):92~97.
    Wullschleger S D, Meinzer F C, Vertessy R A. A review of whole-plant water use studies in trees. Treephysiology,1998,18(8-9):499~512.
    Yamashita T, Kasuya N, Nishimura S, Hiroshi Takeda.Comparison of two coniferous plantations in centralJapan with respect to forest productivity, growth phenology and soil nitrogen dynamics. Forest Ecologyand Management,2004,200(1-3):215~226.
    Yang Y H, Fang J Y, Fay P A, et al. Rain use efficiency across a precipitaion gradient on the Taibei Plateau.Geophysical. Research.Letters,2010,37, L15702, doi:10.1029/2010GL043920.
    Yu G R, Song X, Wang Q F, et al. Water-use efficiency of forest ecosystems in eastern China and its relationsto climatic variables. New Phytologist,2008,177(4):927~937.
    Zhang C J, Chen F H, Jin M. Study on Modern Plant C-13in Western China and Its Significance. ChineseJournal of Geochemistry,2003,22(2):97~106.
    Zheng S X, Shangguan Z P. Spatial patterns of foliar stable carbon isotope compositions of C3plant speciesin the Loess Plateau of China. Ecological Research,2007,22(2):342~353.
    Zheng Y R, Rimmington G M, Xie Z X, et al. Responses to air temperature and soil moisture of growth offour dominant species on sand dunes of central Inner Mongolia. Journal of Plant Research,2008,121(5):473~482.
    曹恭祥.宁夏六盘山华北落叶松与华山松天然次生林蒸散特征研究.内蒙古农业大学硕士学位论文,2010.
    常宗强,冯起,司建华等.阿拉善雅布赖风沙区不同水分条件下白刺叶片的水分生理特征.冰川冻土,2010,32(5):1015~1021.
    陈兰,张守仁.增强UV-B辐射对暖温带落叶阔叶林土庄绣线菊水分利用效率、气孔导度、叶氮素含量及形态特性的影响.植物生态学报,2006,30(1):47~56.
    陈世苹,白永飞,韩兴国等.沿土壤水分梯度黄囊苔草碳同位素组成及其适应策略的变化.植物生态学报,2004,28(4):515~522.
    陈拓,冯虎元,徐世建等.荒漠植物叶片碳同位素组成及其水分利用效率.中国沙漠,2002,22(3):288~291.
    程瑞梅,封晓辉,肖文发等.北亚热带马尾松净生产力对气候变化的响应.应用生态学报,2011,31(8):2086~2095.
    程堂仁,马钦彦,冯仲科等.甘肃小陇山森林生物量研究.北京林业大学学报,2007,29(1):31~36.
    段爱国,张建国,张俊佩等.干热河谷主要植被恢复树种水分利用效率动态分析.北京林业大学学报,2010,32(6):13~19.
    段华平,谢小立,王凯荣.红壤坡地茶园蒸腾及其影响因子研究.农村生态环境,2002,18(2):19~23.
    方精云,徐嵩龄.我国森林植被的生物量和净生产量.生态学报,1996,16(5):497~508.
    冯秋红,史作民,董莉莉等.南北样带落叶乔木功能性状及其与气象因子的关系.中国农业气象,2009,30(1):79~83.
    冯永健,马长明,王彦辉等.华北落叶松人工林蒸腾特征及其与土壤水势的关系.中国水土保持科学研究,2010,8(1):93~98.
    富丰珍,徐程扬,李广德等.冠层部位对三倍体毛白杨光合生理特性的影响,中南林业科技大学学报,2010,30(3):95~99.
    高国雄,李文忠,周心澄等.青海大通退耕还林地生物量与生产力的研究.干旱地区农业研究,2007,25(1):21~25.
    高露双,王晓明,赵秀海.长白山过渡带红松和鱼鳞云杉径向生长对气候因子的响应.植物生态学报,2011,35(1):27~34.
    龚伟,宫渊波,胡庭兴等.CO2浓度升高对湿地松针叶蒸腾特性和水分利用效率的影响.水土保持学报,2005,19(5):178~182.
    郭跃东,郭晋平.山西三道川林场主要森林生态系统生物量和生产力研究.山西农业大学学报(自然科学版),2009,29(3):233~237.
    何春霞,李吉跃,郭明等.4种乔木叶片光和特性和水分利用效率随树高的变化.生态学报,2008,28(7):3008~3016.
    何春霞,李吉跃,张燕香等.5种绿化树种叶片比叶重、光合色素含量和13C的开度与方位差异.植物生态学报,2010,28(7):3008~3016.
    何聪.六盘山北侧叠叠沟小流域三种典型植被水分利用效率研究.广西大学硕士学位论文,2011.
    胡中民,于贵瑞,王秋凤等.生态系统水分利用效率研究进展.生态学报.2009(3):1498~1507.
    黄振英,董学军,蒋高明等.沙柳光合作用和蒸腾作用日动态变化的初步研究.西北植物学报,2002,22(4):817~823.
    蒋高明,何维明.毛乌素沙地若干植物光合作用、蒸腾作用和水分利用效率种间及生境间差异.植物学报,1999,41(10):1114~1124.
    靳新红,王百田,郭红艳等.黄土半干旱区枣、榆水分利用效率的比较研究.中国生态农业学报,2009,17(1):90~93.
    孔维静,郑征.岷江上游茂县退化生态系统及人工恢复植被地上生物量及净初级生产力.山地学报,2004,22(4):445~450.
    李代琼,梁一民,黄瑾等.半干旱黄土区沙棘的形态解剖学特性研究.沙棘,2004,17(1):8~13.
    李吉跃,Blake TJ.多重复干旱循环对苗木气体交换和水分利用效率的影响.北京林业大学学报,1999,21(3):1~8.
    李明财,罗天祥,孔高强等.色季拉山林线不同生活型植物稳定碳同位素组成特征.生态学报,2008,28(7):3160~3167.
    李明财,罗天祥,刘新圣等.高山林线急尖长苞冷杉不同器官的稳定碳同位素组成分布特征.应用生态学报,2007,18(12):2654~2660.
    李伟,曹坤芳.干旱胁迫对不同光环境下的三叶漆幼苗光合特性和叶绿素荧光参数的影响.西北植物学报,2006,26(2):0266~0275.
    李武斌,包维楷,何丙辉等.岷江上游大沟流域油松人工幼林生物量组成及其影响因素.山地学报,2007,25(2):236~244.
    李秧秧,石辉,邵明安.黄土丘陵区乔灌木叶水分利用效率及与水力学特性关系.林业科学,2010,46(2):67~73.
    李宗善,刘国华,傅伯杰等.川西卧龙国家级自然保护区树木生长对气候响应的时间稳定性评估.植物生态学报,2010,34(9):1045~1057.
    林植芳,林桂珠,孔国辉等.生长光强对亚热带自然林两种木本植物的稳定碳同位素比、胞间CO2浓度和水分利用效率的影响.热带亚热带植物学报,1995,3(2):77~82.
    刘冰,赵文智.荒漠绿洲过渡带柽柳和泡泡刺光合作用及水分代谢的生态适应性.中国沙漠,2009,29(1):101~107.
    刘长利,王文全,崔俊茹等.干旱胁迫对甘草光合特性与生物量分配的影响.中国沙漠,2006,26(1):142~145.
    刘海燕,李吉跃,赵燕等.沙柳稳定碳同位素值的特点及其水分利用效率.干旱区研究,2008,25(4):514~518.
    刘晓宏,赵良菊,Menassie Gasaw等.东非大裂谷埃塞俄比亚段内C133植物叶片δC和δ15N及其环境指示意义.科学通报,2007,52(2):199~206.
    刘延慧.六盘山香水河小流域典型植被生长固碳及耗水特征.中国林业科学研究院博士学位论文,2011.
    卢玲,李新,黄春林等.中国西部植被水分利用效率的时空特征分析.冰川冻土,2007(5):777~784.
    吕爱霞,杨吉华,夏江宝等.3种阔叶树气体交换特性及水分利用效率影响因子的研究.水土保持学报,2005,19(3):188~191.
    罗勇,田大伦,项文化等.在CO2浓度加富条件下马尾松针叶的生理生态响应.中南林学院学报,2004,24(1):10~13.
    罗云建,张小全,王效科等.华北落叶松人工林生物量及其分配模式.北京林业大学学报,2009,31(1):13~18.
    马长明,张艳华,赵国华等.燕山山地华北落叶松人工林乔木生物量空间分布格局.河北农业大学学报,2010,33(2):37~41,51.
    马剑英,陈发虎,夏敦胜等.荒漠植物红砂稳定碳同位素组成的空间分布特征.第四纪研究,2006,26(6):947~954.
    孟陈,徐明策,李俊祥等.栲树冠层光合生理特性的空间异质性.应用生态学报.2007,18(9):1932~1936.
    牛书丽,蒋高明,高雷鸣等.浑善达克沙地不同植物功能型光合作用和水分利用特征的比较.生态学报,2005,25(4):699~703.
    彭剑峰,勾晓华,陈发虎等.坡向对海拔梯度上祁连圆柏树木生长的影响.植物生态学报,2010,34(5):517~525.
    渠春梅,韩兴国,苏波等.云南西双版纳片断化热带雨林植物叶片13C值的特点及其对水分利用效率的指示.2001,43(2):186~192.
    任书杰,于贵瑞.中国区域478种C3植物叶片碳稳定性同位素组成与水分利用效率.植物生态学报,2011,35(2):119~124.
    史江峰,鹿化煜,万建东等.采用华山松树轮宽度重建秦岭东缘近百年冬半年温度.第四纪研究,2009,29(4):831~836.
    孙谷筹,赵平,蔡锡安等.马占相思叶片液汁碳同位素甄别率和水分利用效率.生态学杂志,2008,27(4):497~503.
    孙慧珍,周晓峰,赵惠勋.白桦树干液流的动态研究[J].生态学报,2002,22(9):1387~1391.
    孙伟,王德利,王立等.贝加尔针茅不同枝条叶片蒸腾特性与水分利用效率对瞬时CO2和光照变化的响应.生态学报,2004,24(11):2437~2443.
    孙志虎,王庆成.土壤含水量对三种阔叶树苗气体交换及生物量分配的影响.应用与环境生物学报,2004,10(1):007~011.
    谭留夷,赵志江,康东伟等.王朗自然保护区紫果云杉径向生长与气候因子的关系.四川农业大学学报,2011,29(1):29~34.
    谭巍,陈洪松,王克林等.桂西北喀斯特坡地典型生境不同植物叶片的碳同位素差异.生态学杂志,2010,29(9):1709~1714.
    王斌瑞,王百田.黄土高原径流林业.北京:中国林业出版社,1996,145~148.
    王国安,韩家懋,刘东生.中国北方黄土区C-3草本植物碳同位素组成研究.中国科学:D辑,2003,33(6):550~556.
    王华田,马履一.利用热扩式边材液流探针(TDP)测定树木整株蒸腾耗水量的研究[J].植物生态学报,2002,26(6):661~667.
    王孟本,李洪建.黄土高原人工林水分生态研究[M].北京:中国林业出版社,2001.
    王庆伟,于大炮,代力民等.全球气候变化下植物水分利用效率研究进展[J].应用生态学报,2010,21(12):3255~3265.
    王润佳,高世铭,张绪成.高大气CO2浓度下C3植物叶片水分利用效率升高的研究进展.干旱地区农业研究,2010,28(6):190~195.
    王婷,于丹,李江风等.树木年轮宽度与气候变化关系研究进展.植物生态学报,2003,27(1):23~33.
    王文英,李晋川,卢崇恩.黄土高原几种灌木植物的水分利用效率与抗逆性.河南科学,1999,17(增刊1):100~103.
    王晓春,宋来萍,张远东.大兴安岭北部樟子松树木生长与气候因子的关系.植物生态学报,2011,35(3):294~302.
    王妍,江泽慧,彭镇华等.长江滩地杨树林生态系统水分利用效率及影响因子.生态学报,2010,30(11):2933~2939.
    王玉涛,李吉跃,刘平等.不同生活型绿化植物叶片碳同位素组成的季节特征.植物生态学报,2010,34(2):151~159.
    王云霞,陆兆华,苏宏新等.天山云杉树木年轮宽度对气候因子变化的响应.中国矿业大学学报,2007,36(2):251~256.
    文陇英,陈拓,张满效等.不同生境下祁连圆柏叶片色素和稳定碳同位素组成的变化.冰川冻土,2010,32(4):823~828.
    吴刚,冯宗炜.中国油松林群落特征及生物量的研究.生态学报,1994,14(4):415~422.
    谢会成,姜志林.栓皮栎水分利用效率的动态变化.安徽农业科学,2010,38(26):14372~14373,14394.
    熊伟,王彦辉,程积民等.三种草本植物蒸腾量的对比试验研究[J].水土保持学报,2003,17(1):170~172.
    熊伟,王彦辉,于鹏涛.树木水分利用效率研究综述.生态学杂志,2005,24(4):417~421.
    熊伟,王彦辉,于澎涛等.六盘山辽东栎、少脉椴天然次生林夏季蒸散研究.应用生态学报,2005,16(9):1628~1632.
    熊伟,王彦辉,于澎涛等.六盘山南坡华北落叶松(Larix principis-rupprechtii)树干直径生长及其对气象因子的响应.生态学报,2007,27(2):432~441.
    熊伟,王彦辉,于澎涛等.华北落叶松树干液流的个体差异和林分蒸腾估计的尺度上推.林业科学,2008,44(1):34~40.
    熊忠华,严敏,伍孝贤.华山松、响叶杨混交林的生长及土壤养分分析.山地农业生物学报,2005,24(4):299~302.
    徐振锋,胡庭兴,张力等.青藏高原东缘林线交错带糙皮桦幼苗光合特性对模拟增温的短期响应.植物生态学报,2010,34(3):263~270.
    许振柱,周广胜,肖春旺等.CO2浓度倍增和土壤干旱对两种幼龄沙生灌木碳分配的影响.植物生态学报,2005,29(2):281~288.
    闫海龙,梁少民,张希明等.塔克拉玛干沙漠特有灌木光合作用对生境中特殊温度、湿度及辐射变化的响应.科学通报,2008,53(增刊Ⅱ):74~81.
    严昌荣,韩兴国,陈灵芝等.暖温带落叶阔叶林主要植物叶片13C值的种间差异及时空变化.植物学报,1998,40(9):853~859.
    严昌荣,韩兴国,陈灵芝.六种木本植物水分利用效率和其小生境环境关系研究.生态学报,2001,21(11):1952~1956.
    杨小玉,王晓江,德永军.山桃等3个树种叶片解剖结构的耐旱性特征研究.内蒙古林业科技,2008,34(2):40~42.
    殷树鹏,张成君,郭方琴等.植物碳同位素组成的环境影响因素及在水分利用效率中的应用.同位素,2008,21(1),46~53.
    余孟好,孙谷畴,赵平.马占相思林冠层水分利用效率的气候调节.应用与环境生物学报,2010,16(3):309~316.
    喻方圆,徐锡增,Robert D Guy.水分和热胁迫处理对4种针叶树苗木气体交换和水分利用效率的影响.林业科学,2004,40(2):38~44.
    袁春明,郎南军,孟广涛等.长江上游华山松水土保持人工群落的结构特征与生物量.东北林业大学学报,2002,30(3):5~7.
    袁玉江,李江风.天山乌鲁木齐河源450a冬季温度序列的重建与分析.冰川冻土,1999,21(1):64~70.
    张春敏.长江源区植被净初级生产力及水分利用效率的估算研究.兰州大学,2008.
    张军,黄永梅,焦会景等.毛乌素沙地油蒿群落演替的生理生态学机制.中国沙漠,2007,27(6):977~983.
    张淑勇,周泽福,张光灿等.水分胁迫下天然次生灌木山桃和山杏光合气体交换特征.西北植物学报,2008,28(12):2492~2499.
    张淑勇,周泽福,张光灿等.半干旱黄土丘陵区天然次生灌木山桃(Prunus davidiana)与山杏(Prunussibirica L.)叶片气体交换参数日动态差异.生态学报,2009,29(1):499~507.
    张怡,罗晓芳,沈应柏.干旱胁迫下四倍体刺槐幼苗水分利用效率及稳定碳同位素组成的研究.西北植物学报,2009,29(7):1460~1464.
    赵平,孙谷畴,曾小平等.两种生态型榕树的叶绿素含量、荧光特性和叶片气体交换日变化的比较研究.应用生态学报,2000,11(3):327~332.
    赵平,饶兴权,马玲等.马占相思(Acacia mangium)树干液流密度和整树蒸腾的个体差异.生态学报,2006,26(12):4050~4058.
    赵勇,陈桢,樊巍等.太行山低山丘陵区7种典型植物水分利用特征.中国水土保持,2010,8(5):61~66.
    郑淑霞,上官周平.近70年来黄土高原典型植物δ13C值变化研究.植物生态学报,2005,29(2):289~295.
    周海光,土小宁.沙棘与其他水土保持树种光合特征的比较.国际沙棘研究与开发,2008,6(3):21~26.
    周洪华,陈亚宁,李卫红等.干旱区胡杨光合作用对高温和浓度的响应.生态学报,2009,29(6):2797~2810.
    周杨.六盘山北侧华北落叶松人工林蒸腾规律及水量平衡研究.宁夏大学硕士学位论文,2010.
    朱海峰,王丽丽,邵雪梅等.雪岭云杉树轮宽度对气候变化的响应.地理学报,2004,59(6):863~870.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700