用户名: 密码: 验证码:
光泵磁力仪的频率采集系统的设计与实现
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
地球具有磁性很早就被人们所熟知,从远古时代到现代,一代代人们致力于地球磁场的研究工作,在研究与地磁现象有关的物理现象过程中,磁场测量技术不断得到发展。在航空航天、国防建设、地质探测、精密定位、日常生活等领域,磁场测量技术起到关键作用。磁力仪的发展经历了从最简单的磁通门磁力仪到质子旋进磁力仪、超导磁力仪、原子磁力仪等,原子磁力仪由于其可以测量梯度张量,灵敏度最高,重量轻、功耗低、体积小、无需制冷设备等优点,现在越来越多的人进行研究。所以,研制更高精度的磁场测量技术和磁场测量仪器有着很好的市场价值。
     光泵磁力仪最早被人们认识是1950年以后,光泵磁力仪是一种以元素原子(常用钾(K39);铷(Rb87,Rb85);铯(Cs133);氦(He4,He3))的能级结构为基础,通过光抽运效应和光磁共振技术研制而成的磁场测量仪器。由于光磁共振的电磁场的频率与磁力仪所在点的外磁场具有比例关系,故磁场强度的测量可以转换成频率的测量。随着EDA技术的不断发展,光泵磁力仪在测量精度,测量速度等方面有很大提高。基于光泵磁力仪的灵敏度很高,测量磁场的总强度、梯度没有零点漂移,不必严格控制方向的优点,光泵磁力仪的应用与地磁场测量的前景非常好,世界上好多国家都在致力于光泵磁力仪的研究,已成功研制出多种类型,应用于很多领域。本文首先介绍了磁力仪的发展历史及其应用分类,然后详细分析了光泵磁力仪的物理学原理,常用的磁场测量方法及磁共振检测方法,论述了铯原子能级分裂、圆偏振光对铯原子的激发、光抽运效应及光泵磁强检测系统的工作原理。然后根据常用频率测量的方法根据测量误差和课题精度要求选择了一种高精度定闸门测频的方法,然后根据已有铯光泵弱磁强度检测电路系统的方案,设计了共振频率的测量系统,结合CPLD技术和高精度定闸门测频方法,实现了频率的高精度的连续测量,最后给出了整个测量系统调试及测试结果,测量精度基本达到了设计要求,具有很好的应用价值。
The earth has magnetic which have long been known by people, from ancient times to modern, a generation of people committed to study the earth's magnetic fields, in the process of researching the geomagnetic phenomena related to the physical phenomenon,magnetic field measurement technology continuously gets development. In the aerospace, national defense construction, geological exploration, precision positioning, daily life and other fields,magnetic field measurement technology plays a key role. The development of the magnetometer experienced from the most simple magnetic flux door magnetometer to spin the protons into magnetometer, superconducting magnetic instrument, such as atomic magnetometer, atomic magnetometer because its can measure gradient tensor, most sensitive, light weight, low power consumption, small in volume, no refrigeration equipment and other advantages, is now more and more people.Therefore, the development of more high precision magnetic field measurement technology and magnetic measuring instrument has a very good market value.
     Optical pumping magnetometer was first recognized after1950, optical pumping magnetometer is a kind of magnetic field measurement instrument which based on the atoms (commonly used potassium (K39); rubidium (Rb87, Rb85); CS (Cs133); helium (He4, He3)) of the energy structure, and developed through the optical pumping effect and magnetic resonance technology. Due to the proportional relationship of the frequency of electromagnetic wave and the optical pumping magnetic resonance magnetometer point external magnetic field, so the magnetic field strength measurements can be converted into frequency measurement. With the continuous development of EDA technology, optical pumping magnetometer in the precision of measurement, measuring speed has greatly mproved. Based on the high sensitivity of the optical pump magnetometer, the measurement of magnetic field intensity, gradient is not always zero drift, do not have to strictly control the direction advantages, the application prospect of optical pumping magnetometer and earth magnetic field measurement is very good, on the world a lot of countries are committed to the study of optical pump magnetometer, has successfully developed a variety of types which applicate in many fields. This paper first introduces the development history of the magnetometer and its application field, the optical pump magnetometer of physics principles, commonly used measurement method for magnetic field and magnetic resonance detection method, discusses the cesium atomic energy level splitting, circularly polarized light to cesium atomic excitation, optical pumping effect and the optical pump magnetic detection system working principle. Based on existing cesium optical pump weak magnetic field intensity detecting circuit system design scheme, the resonance frequency of the measurement system, combined with CPLD technology and high precision fixed gate frequency measurement method, realizes the high-precision frequency continuous measurement, finally gives the debugging and testing results of system. Has the very good application value.
引文
[1]张昌达.量子磁力仪研究与开发近况[J].物探与化探,2005,29(4):3-6.
    [2]张昌达.航空磁力梯度张量测量[J].工程地球物理学报,2006,3(5):3-5.
    [3]张振宇,程德福,连明昌等.氦光泵磁力仪信号检测控制回路的设计[J].电子测量与仪器学报,2011(04).
    [4]居敏花.基于CPLD的频率计的设计[D].苏州大学,2010年.
    [5]徐瑞亚CPLD在数字频率计设计中的应用[J].信息化研究,2011(3).
    [6]关鹏.高精度非标准频率测量技术研究与仪器设计[D].西安电子科技大学,2006.
    [7]包本刚.基于FPGA的全同步数字频率计的设计[D].湖南大学,2007.
    [8]G Panaitov,M Bick,Y Zhang,etc.Peculiarities of SQUID magnetomer applicationin TEM[J]. Geophysics,2002,67(3):739-745,
    [9]J Allred,R Lyman,T Kornack,etc.A high sensitivity atomicmagne to meterunaf fected by spinex change relaxation[J].Phys.Rev.Lett,2002,(89):130801.
    [10]IK Kominis,TW Kornak,JC Mired,etc.A subfemtotes lamulti channelatomic magnetometer[J]. Nature,2003,422(6932):596-599.
    [11]Dmitry Budker.A new spinon magnetometry[J].Nature,2003,422(6932);574-575.
    [12]SJ Seltzer,MV Romalis.Unshielded three-axisvectoro perationo faspin exchange relaxation free atomic magnetometer[J].Applied Physics Letters,2004,85(20):4804-4806.
    [13]Hollberg L, Diddams S.A, Bartels A, Optical and microwave frequency stability: Some constraints, Institute of Electrical and Electronics Engineers Inc,2005.
    [14]G-822A Cesium Magnetometer Operation Manual[R].
    [15]GT-2A Airborne Gravimeter[EB/OL],Canadianmicrogravity.com/pdf_new/GT_2A.pdf.
    [16]G-824A Cesium Magnetometer[EB/OL],www.geometrics.com/assets/images/g824a-09.
    [17]SGroeger,GBison.Laser-pumpedcesium magnetometers for high-resolution medicaland fundamental research[J]. Sensors and Actuators A,2006,129(3):1-5.
    [18]Budker D,Romalis MV.Optical magnetometry[J].Nature Physics,2007,3:4-8.
    [19]M.Salvatore, Godone.Aldo, Medium-long term frequency stability of pulsed vapor cell clocks. Institute of Electrical and Electronics Engineer Inc,2010.
    [20]LIYue-Liang.Theprinciple of WCZ-1 proton magnetometer and its application[J]. Technological Development of Enterprise,2008,27(10):3-4.
    [21]Georges, Thierry, Chauzat, Corinne, Short and long term frequency stability of linear monolithic intra-cavity frequency-doubled solid-state laser, SPIE,.2010.
    [22]Tristan Technologies,Inc.3-ModelG 377 axis 77 Kgeophysical Magnetometer SQUID System [EB/OL].
    [23]J B Lee,D LDart,C PF oley,etc.Airborne TEM surveying with a SQUID magnetometer sensor[J].Geophysics,2002,67(2):468-477.
    [24]Bruce Mc Monnies,JustinL Ward.Beyong single-sensor magnetic surveying.Thepast, presentand future of air bornemagnetic acquisition for kimberlite exploration[C],8th International Kimberlite Conferenee Long Abstract3,8th International Kimberlite Conference,2003:Victoria, B.C, Canada.
    [25]科技计划管理工作动态,我国自主研发的航磁全轴梯度勘查系统开始性能测试飞行[EB/OL],www.acca21.Org.cn/ocean/ly/news090916.pdf.
    [26]李晓禄.运五飞机上航磁梯度测量系统的安装与补偿[J].物探与化探,2006,30(3):1-3.
    [27]李曙光.原子磁力仪的研究[D].浙江大学,2009.
    [28]张杨.基于超精细结构下的激光光泵铯磁力仪的理论研究[J].光学与光电技术,2010,8
    [29]曾媛.铷原子频标光谱灯与量子系统小型化研究[D].武汉:中国科学院武汉物理与数学研究所,2004.
    [30]陈志红.被动型铷原子频标光谱灯优化设计及频标相关技术[D].武汉:中国科学院武汉物理与数学研究所,2001.
    [31]王克廷,陈海军,韩如春等.卫星导航用铯原子束频标和小密封铯束管[C].北京香山科学会议第181次学术讨论会,2002:10-22.
    [32]郭怀明,王福合.光泵共振实验探讨[J].大学物理实验,2009,22(1):2-3.
    [33]司风雷.铯光泵谱灯激励与弱磁检测电路的设计和实现[D].武汉理工大学,2010年.
    [34]祁香兵.数字氦光泵磁力仪的设计与实现[D].浙江大学,2007.
    [35]赵爱清.分子磁性材料的设计与制备,华中科技大学,2006.
    [36]冷荣军.量子磁体Li1-xNaxCu2O2单晶磁化率研究,中国科学技术大学,2011.
    [37]杜保强.基于异频信号的群相位量子化处理及其关键技术研究[J].西安电子科技大学,2011.
    [38]张前毅.基于CPLD的微波频率计研究[D].电子科技大学,2007.
    [39]梁永君.浅谈几种测频方法[J].未知,2010(5).
    [40]赵亮等.基丁Verilog语言的等精度频率计设计[J].电子工程师,2007(9).
    [41]孙岐峰.等精度频率计误差分析及改进型设计[J].计量与测试技术,2011(7).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700