用户名: 密码: 验证码:
智舌正弦波包络激发信号的技术与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
智舌是本实验室自主研发的一种伏安型电子舌系统,主要由传感器阵列、信号激发与采集系统以及智能算法三个部分组成。本研究以智舌为实验平台,在原有硬件基础上设计出一种新的激发信号,即正弦波包络信号。同时,对正弦波包络激发信号进行数据处理及分析方法研究,并通过与原有多频脉冲信号对比验证其检测能力和稳定性。正弦波包络激发信号检测技术在白酒香型的区分、黄酒产地辨识、椰汁品质辨别和巴氏杀菌牛乳货架期等领域得到良好的应用。主要研究工作及结果如下:
     (1)研究设计了包含1Hz、10Hz、100Hz三个检测频率段的正弦波包络信号,并根据对味觉物质的检测效果对包络形式进行了优选。在实验室智舌平台的基础上,成功构建了一种结合非修饰惰性金属传感器阵列及多元统计分析方法的正弦波包络信号检测技术。
     (2)针对正弦波包络的响应信号特点,选择主成分分析和傅里叶变换作为数据处理方法,并通过MATLAB软件实现数据处理过程。比较研究了傅里叶变换实时在线过程和离线处理过程,并选择离线傅里叶变换为本研究的操作方法。分析了正弦波包络响应信号傅里叶变化后的频率一幅值谱图,建立了一套有效的分析方法,即傅里叶指纹图谱。分析指出,基于正弦波包络信号检测的智舌系统对不同物质的辨识能力体现在频率一幅值图中特征频率的幅值大小差异。
     (3)研究利用主成分得分图的区分效果和主成分DI值为评价指标,对正弦波包络信号技术的检测能力和稳定性进行探讨。通过与多频脉冲信号进行比较,结果证实了正弦波包络信号检测能力更为突出,检测稳定性更好。
     (4)正弦波包络信号能够对不同香型的白酒进行良好的区分,同时也能根据某些感官属性进行分辨归类;能够对不同产地、品牌的花雕酒、加饭酒进行很好的辨识,对原产地保护起到积极作用;可以很好的位用于椰汁的区分,并对不同感官属性进行辨识,可对品牌保护、真假识别等方面起到突出的作用;能对巴氏杀菌牛乳进行货架期跟踪检测,可对牛乳异常情况作出判断,起到示警作用。通过各种应用案例的比较研究,正弦波包络信号检测能力强于智舌原有的多频脉冲信号。
Smartongue system is a kind of voltammetric electronic tongue self-developed in our laboratory, which composed of sensor array, signal excitation and acquisition system and intelligent algorithm. A novel stimulating signal named sinusoidal envelope signal was designed in this research based on the experimental platform for the Smartongue hardware. Meanwhile, the sinusoidal envelope signal was verified in capability and stability detections comparing to multi-frequency large amplitude pulse voltage, after response data process and analysis. And it has successful application to Chinese white spirits separation, Chinese rice wines from different areas detection, coconut milk character discrimination and pasteurized milk shelf-life identification. The main research works and results are as follows:
     (1) This research has created sinusoidal envelope detecting signal consisted1Hz,10Hz and100Hz frequency segments detected envelope signal, of which waveform was optimized related to the effects of four taste substances separation. Based on the construction of Smartongue experimental platform, the sinusoidal envelope signal detection techniques has been established combining with an array of non-modified metal electrode sensors and multivariate statistical analysis.
     (2) Considering to the characteristics of sinusoidal envelope response signals, we chose the principal component analysis and Fourier transform as data processing methods, which were accomplished by MATLAB software. Comparative study of the real-time and off-line Fourier transform processing had been carried out to select off-line Fourier transform as data processing methods. Based on analysis of frequency-amplitude spectra made from sinusoidal envelope response data after fast Fourier transformation, we established an effective analysis method, named Fourier frequency-amplitude fingerprint. The analysis results pointed out that recognition ability on different substances of the Smartongue system was sinusoidal envelope signal detection based on the wisdom of the tongue system is reflected from the differences of amplitude values on frequency-amplitude spectra.
     (3) This research was willing to explore signal envelope signal technology's detecting capacity and stability using principal component score plots and DI value as evaluation indexes. Compared with multi-frequency large amplitude pulse voltage signal, the results showed that the sinusoidal envelope signal had a better detecting ability and stability of better detection without doubt.
     (4) Sinusoidal envelope signal had a good application in distinction of Chinese white spirits with different flavor and could classify the specific sensory properties. It could also identified Hua-Diao and Jia-Fan rice wines with different areas and brands in order to play a positive role in origin protection. It had been well applied in coconut milk and distinguished sensory attributes differences and had notable effects on commodities'brand protection and fakes recognition. It could also detect pasteurized milk shelf-life and make judgments about the abnormal milk to warn the tasks. We concluded that sinusoidal envelope signal have a better detection capability than multi-frequency large amplitude pulse voltage signal considering to comparative research on various applications.
引文
[1]邓少平,田师一.电子舌技术背景与研究进展[J].食品与生物技术学报,2007,26(4):110-116.
    [2]钟海军.智舌的虚拟仪器实验平台设计与构建研究[D].杭州:浙江工商大学食品与生物工程学院,2009:1-9.
    [3]A. Palkama, K. Kalliomaki, S-E. Masar. Electronic TV-pupillometric device and its adaptation for studying drug penetration into the intact rabbit eye[J]. Experimental Eye Research,1977,24(1):102.
    [4]B.O. Bystrom, A. Nilsson, E. Olsson. Development of artificial hands for use in chain saw vibration measurement[J]. Journal of Sound and Vibration,1982,82(1): 111-117.
    [5]K. Maurer, K. Schroder, E. Schafer. Programmable auditory stimulus generator and electro-acoustic transducers-Measurements of sound pressure in an artificial ear and human ear canal[J]. Electroencephalography and Clinical Neurophysiology,1984, 58(1):77-82.
    [6]F. Benedetti, I. Ferro. Implantation of artificial whiskers on the ears of newborn mice induces visual re-mapping in the superior colliculus[J]. Neuroscience Letters,1994, 168(1-2):45-48.
    [7]E. Schaller, J.O. Bosset, F. Escher.'Electroinc Noses'and their application to food[J]. Lebensmittel-Wissenschaft und-Technologie,1998,31 (4):305-316.
    [8]E. Zrenner. Will retinal implants restore vision[J]. Science,2002,295:1022-1025.
    [9]P.H. Chappell, A. Cranny, D.P. J. Cotton, et al. Sensory motor systems of artificial and natural hands[J]. International Journal of Surgery,2007,5(6):436-440.
    [10]S. Fuchs, P. Strobel, M. Sladat, et al. Evaluation of unpleasant odor with a portable electronic nose[J]. Materials Science and Engineering,2008,28(5-6):949-953.
    [11]田师一.多频脉冲电子舌系统构建及应用[D].杭州:浙江工商大学食品与生物工程学院,2009:1-10.
    [12]K. Persaud, G. Dodd. Analysis of discrimination mechanisms in the mammalian olfactory system using a model nose[J]. Nature,1982,299(9),352-355.
    [13]黄赣辉,邓少平.人工智能味觉系统:概念、结构与方法[J].化学进展,2006,18(4):494-500.
    [14]K. Toko. Taste sensor[J]. Sensors and Actuators B,2000,64:205-215.
    [15]S. Liyama, S. Ezaki, K. Toko, et al. Study of astringency and pungency with multichannel taste sensor made of lipid membranes[J]. Sensors and Actuators B, 1995,24:24-79.
    [16]S. Liyama, Y. Azuma, M. Nagaishi, et al. Change in electric characteristics of membranes in response to taste stimuli with increasing amount of lipids in membrane matrix of PVC and plasticizer[J]. Biophysical Chemistry,1996,61: 23-27.
    [17]S. Liyama, M. Yahiro, K. Toko, et al. Measurements of soy sauce using taste sensor[J]. Sensors and Actuators B,2000,66:205-206.
    [18]S. Liyama, H. Kuga, K. Toko, et al. Peculiar change in membrane potential of taste sensor caused by umami substances[J]. Sensors and Actuators B,2003,91:191-194.
    [19]王茹.智能模式识别单元的实现与应用研究[D].杭州:浙江工商大学食品与生物工程学院,2009:1-13.
    [20]K.Woertz, C. Tissen, P. Kleinebudde, et al. A comparative study on two electronic tongues for pharmaceutical formulation development[J]. Journal of Pharmaceutical and Biomedical Analysis,2011,55:272-281.
    [21]C. Krantz-Rulcker, M. Stenberg, F. Winquist, et al. Electronic tongues for environmental monitoring based on sensor arrays and pattern recognition:a review[J]. Analytica Chimica Acta,2001,426:217-226.
    [22]P. Ivarsson, Y. Kikkawa, F. Winquist, et al. Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor[J]. Analytica Chimica Acta,2001,449: 59-68.
    [23]K. Toko, T. Murata, T. Matsuno, et al. Taste map of beer by a multichannel taste sensor[J]. Sensors Material,1992,4:145-151.
    [24]H. Yamada, Y. Mizota, K. Toko, et al. Highly sensitive discrimination of taste of milk with homogenization treatment using a taste sensor [J]. Materials Science and Engineering C,1997,5:41-45.
    [25]H. Sakai, S. Iilyama, K. Toko. Evaluation of water quality and pollution using multichannel sensors[J]. Sensor and Actuators B,2000,66:251-255
    [26]A. Legin, E.A. Bychkov, Y.G. Vlasov. Analytical applications of chalcogenide glass chemical sensors in environmental monitoring and process control[J]. Sensor and Actuators B,1995,24:309-311.
    [27]A. Legin, Y.G. Vlasov, A.M. Rudnitskaya, et al. Cross-sesitivity of chalcogenide glass sensors in solutions of heavy metal ions[J]. Sensors and Actuators B,1996,34: 456-461.
    [28]M.J. Schoning, C. Schmidt, J. Schubert, et al. Thin film sensors on the basis of chalcogenide glass materials prepared by pulsed laser deposition technique[J]. Sensors and Actuators B,2000,68:254-259.
    [29]M.J. Schoning, R. Krause, K. Block, et al. A dual amperometric/potentiometric FIA-based biosensor for the distinctive detection of organophosphorus pesticides[J]. Sensors and Actuators B,2001,78:273-278.
    [30]L. Lvova, S.S. Kim, A. Legin, et al. All-solid-state electronic tongue and its application for beverage analysis[J]. Analytica Chimica Acta,2002,468:303-314.
    [31]L. Lvova, A. Legin, Y. Vlasov, et al. Multicomponent analysis of Korean green tea by means of disposable all-solid-state potentiometric electronic tongue microsystem[J]. Sensors and Actuators B,2003,95:391-399.
    [32]P. Ivarsson, S. Holmin, N-E. Hojer, et al. Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms [J]. Sensors and Actuators B,2001,76:449-454.
    [33]S. Holmin, P. Spangeus, C. Krantz-Riilcker, et al. Compression of electronic tongue data based on voltammetry--a comparative study[J]. Sensors and Actuators B,2001, 76:455-464.
    [34]F. Winquist, S. Holmin, C. Krantz-Rulcker, et al. A hybrid electronic tongue[J]. Analytica Chimica Acta,2000,406:147-157.
    [35]A. Riul, R.R. Malmegrim, F.J. Fonseca, et al. An artificial taste sensor based on conducting polymers[J]. Biosensors and Bioelectronics,2003,18:1365-1369.
    [36]S. Burattia, S. Benedetti, M. Scampicchio, et al. Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue[J]. Analytica Chimica Acta,2004,525:133-139.
    [37]M.G. Buehler, G.M. Kuhlman, D. Keymeulen. Advanced electronic tongue concept[C].2002 IEEE Aerospace Conference. USA,2002:407-416.
    [38]L.H.C. Matto, S.V. Mello, A. Riul, et al. Synthesis and characterization of poly (o-phenetidine) for the fabrication of Langmuir and Langmuir-Blodgett films [J]. Thin Solid Films,1994,244(1-2):714-717.
    [39]C.J.L. Constantino, A. Dhanabalan, A. Riul, et al. Surface potentials of polyaniline lb films[J]. Synthetic Metals,1999,101(1-3):688-689.
    [40]A. Riul, A.M. Gallardo, S.V. Mello, et al. An electronic tongue using polypyrrole and polyaniline[J]. Synthetic Metals,2003,132(2):109-116.
    [41]A. Riul, R.R. Malmegrim, F.J. Fonseca, et al. An artificial taste sensor based on conducting polymers [J]. Biosensors and Bioelectronics,2003,18(11):1365-1369.
    [42]A.Riul, H.C.D. Sousa, R.R. Malmegrim, et al. Wine classification by taste sensors made from ultra-thin films and using neural networks[J]. Sensors and Actuators B, 2004,98(1):77-82.
    [43]G.F. Martins, A.A. Pereira, B.A. Straccalano, et al. Ultrathin films of lignins as a potential transducer in sensing applications involving heavy metal ions[J]. Sensors and Actuators B,2008,129(2):525-530.
    [44]A.C. Perinotto, L. Caseli, C.O. Hayasaka, et al. Dendrimer-assisted immobilization of alcohol dehydrogenase in nanostructured films for biosensing:Ethanol detection using electrical capacitance measurements [J]. Thin Solid Films,2008,516(24): 9002-9005.
    [45]S. Buratti, S. Benedetti, M. Scampicchio, et al. Characterization and classification of Italian Barbera wines by using an electronic nose and an amperometric electronic tongue[J]. Analytica chimica acta,2004,525:133-139.
    [46]G. Sehra, M. Cole, J.W. Gardener. Miniature taste sensing system based on dual SH-SAW sensor device:an electronic tongue[J]. Sensors and Actuators B,2004, 103(1-2):233-239.
    [47]I.I. Leonte, G. Sehra, M. Cole, et al. Taste sensors utilizing high-frequency SH-SAW devices[J]. Sensors and Actuators B,2006,118(1-2):349-355.
    [48]王平.人工嗅觉与人工味觉[M].北京:科技出版社,2000:147-158.
    [49]F. Winquist, P. Wide, I. Lundstrom. An electronic tongue based on voltammetry[J]. Anal. Chim. Acta,1997,357:21-31.
    [50]F. Winquist, S. Holmin, C. Krantz-Rulcker, et al. A hybrid electronic tongue[J]. Analytica Chimica Acta,2000,406:147-157.
    [51]P. Ivarsson, Y. Kikkawa, F. Winquist, et al. Comparison of a voltammetric electronic tongue and a lipid membrane taste sensor[J]. Analytica Chimica Acta,2001,449: 59-68.
    [52]F. Winquist, E. Rydberg, S. Holmin, et al. Flow injection analysis applied to a voltammetric electronic tongue[J]. Analytica Chimica Acta,2002,471:159-172.
    [53]A. Gutes, F. Cespedes, M.D Valle, et al. A flow injection voltammetric electronic tongue applied to paper mill industrial waters[J]. Sensors and Actuators B,2006,115: 390-395.
    [54]J. Olsson, F. Winquist, I. Lundstrom. A self polishing electronic tongue[J]. Sensors and Actuators B,2006,118:461-465.
    [55]S. Holmin, C. Krantz-Riilcker, I. Lundstrom, et al. Drift correction of electronic tongue responses[J]. Measurement Science and Technology,2001,12:1348-1354.
    [56]T. Artursson, M. Holmberg. Wavelet transform of electronic tongue data[J]. Sensors and Actuators B,2002,87:379-391.
    [57]P. Ivarsson, S. Holmin, N-E. Hojer, et al. Discrimination of tea by means of a voltammetric electronic tongue and different applied waveforms [J]. Sensors and Actuators B,2001,76:449-454.
    [58]F. Winquist, R. Bjorklund, C. Krantz-Rulcke, et al. An electronic tongue in the dairy industry [J]. Sensors and Actuators B,2005,111-112:299-304.
    [59]R.H. Labrador, J. Olsson, F. Winquist, et al. Determination of Bisulfites in Wines with an Electronic Tongue Based on Pulse Voltammetry[J]. Electroanalysis,2009, 21(3-5):612-617.
    [60]F. Winquist, C. Krantz-Rulcker, P. Wide, et al. Monitoring of freshness of milk by an electronic tongue on the basis of voltammetry[J]. Measurement Science and Technology,1998,9:1937-1946.
    [61]C. Soderstrom, F. Winquist, C. Krantz-Rulcker. Recognition of six microbial species with an electronic tongue[J]. Sensors and Actuators B,2003,89:248-255.
    [62]C. Soderstrom, H. Boren, F. Winquist, et al. Use of an electronic tongue to analyze mold growth in liquid media[J]. International Journal of Food Microbiology,2003, 83:253-261
    [63]J. Olsson, P. Ivarsson, F. Winquist. Determination of detergents in washing machine wastewater with a voltammetric electronic tongue[J]. Talanta,2008,76:91-95.
    [64]P. Ivarsson, M. Johansson, N-E. Hojer, et al. Supervision of rinses in a washing machine by a voltammetric electronic tongue[J]. Sensors and Actuators B,2005,108: 851-857
    [65]邓少平,郝俊光,张传瑞,等.固体支撑双层脂质膜(S-BLM)味觉传感器的初步研究[J],1997,18(11):17-20.
    [66]邓少平,郝俊光,林晓峰.琼脂盐桥类脂膜味觉传感器的研究[J].化学传感器,1997,4(12):273-275.
    [67]黄赣辉,邓少平,顾振宇.PVC薄膜味觉传感器阵列对调味品和软饮料的识别[J].食品科学,2006,27(10):84-88.
    [68]S.Y. Tian, S.P. Deng, Z.X. Chen. Multifrequency large amplitude pulse voltammetry: A novel electrochemical method for electronic tongue[J]. Sensors and Actuators B, 2007,123:1049-1056.
    [69]S.Y. Tian, S.P. Deng, C.H. Ding, et al. Discrimination of red wine age using voltammetric electronic tongue based on mutifrequency large-amplitude voltammetry and pattern recognition method[J]. Sensors and Materials,2007,19: 287-298.
    [70]李华,丁春辉,尹春丽,等.电子舌对昌黎原产地干红葡萄酒的区分辨识[J].食品与发酵工业,2008,34(3):130-132.
    [71]王茹,田师一,邓少平.智舌在白酒区分辨识中的应用研究[J].食品研究与开发酿酒科技,2008,11:54-56.
    [72]牛海霞.基于多频脉冲电子舌的茶饮料区分辨识[J].食品工业科技,2008,29(6):124-128.
    [73]范佳利,韩剑众,田师一,等.基于电子舌的乳制品品质特性及新鲜度评价[J].食品与发酵工业,2009,35(6):177-181.
    [74]韩剑众,黄丽娟,顾振宇,等.基于电子舌的肉品品质及新鲜度评价研究[J].中国食品学报,2008,8(3):125-132.
    [75]韩剑众,黄丽娟,顾振宇,等.基于电子舌的鱼肉品质及新鲜度评价[J].农业工程学报,2008,24(12):141-144.
    [76]张素平,田师一,邓少平.智舌对基本味物质辨识能力的实验研究[J].中国食品学报,2009,9(12):111-116.
    [77]赵广英,林晓娜,申科敏,等.智舌对四类霉菌的区分[J].研究传感技术学报,2009,22(4):451-455.
    [78]张东星,罗之纲,田师一,等.智舌在茶类饮料生产中的应用[J].食品研究与开发,2010,31(3):184-186.
    [79]Arrieta, M.L Rodriguez-Mendez, J.A.D Saja. Langmuir-Blodgett film and carbon paste electrodes based on phthalocyanines as sensing units for taste [J]. Sensors and Actuators B,2003,95(1-3):357-365.
    [80]C. Apetrei, M.L. Rodriguez-Mendez, V. Parra, et al. Array of voltammetric sensors for the discrimination of bitter solutions[J]. Sensors and Actuators B,2004,103(1-2): 145-152.
    [81]V. Parra, T. Hernando, M.L. Rodriguez-Mendez, et al. Electrochemical sensor array made from tophthalocyanine modified carbon paste electrodes for discrimination of red wines[J]. Electrochimica Acta,2004,49(28):5177-5185.
    [82]C. Apetrei, M.L. Rodriguez-Mendez, J.A.D. Saja. Modified carbon paste electrodes for discrimination of vegetable oils[J]. Sensors and Actuators B,2005,111-112: 403-409.
    [83]吴坚,刘军,傅敏,等.一种基于电子舌技术的绿茶分类方法[J].传感器技术学报,2006,19(4):963-965.
    [84]张德丰MATLAB数字信号处理与应用[M].北京:清华大学出版社,2000:87-119.
    [85]藤嶋昭,相澤益男,井上徹.电化学测定方法[M].北京:北京大学出版社,1995:10-55.
    [86]焦庆祝,何荣桓,王建华.工业设备化学清洗技术[M].北京:石油工业出版社,95:90-159.
    [87]陈旭俊.工业清洗剂及清洗技术[M].北京:化学工业出版社,2002:25-414.
    [88]梁治齐,张宝旭.清洗技术[M].北京:中国轻工业出版社,1998:25-414.
    [89]张素平.智舌传感器阵列漂移校正技术研究[D].杭州:浙江工商大学,2008:21-22.
    [90]边肇祺,张学工.模式识别[M].北京:清华大学出版社,2000:72-99.
    [91]A.K. Jain, J.C. Mao, R.P.W. Duin. Statistical pattern recognition:a review[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(1):34-37.
    [92]K. Pearson. On lines and planes of closest fit to systems of points in space[J]. Philosophical Magazine,1902,2(6):559-572.
    [93]H. Hotelling. Analysis of a complex of statistical variables into principal components[J]. Journal of Educational Psychology,1933,24:417-441,498-520.
    [94]何晓群.多元统计分析[M].北京:中国人民大学出版社,2004:36-67.
    [95]史永刚,冯新泸,李子存.化学计量学[M].中国石化出版社,2002:15-89.
    [96]梁逸曾,俞汝勤.化学计量学[M].高等教育出版社,2003:65-112.
    [97]史永刚,粟斌,天高由.化学计量学方法及MATLAB实现[M].北京:中国石化出版社,2010:136-232.
    [98]许国根,许萍萍.化学化工中的数学方法及MATLAB实现[M].北京:化学工业出版社,2010:51-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700