用户名: 密码: 验证码:
Ce~(3+)掺杂CaF_2/BaF_2透明陶瓷的制备及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以硝酸钙、硝酸铈、氟化钾为原料,以去离子水为介质,采用共沉淀法制备掺铈氟化钙纳米粉体。使用x射线衍射仪、扫描电镜、透射电镜及荧光光谱仪等手段表征样品的物相,形貌及光谱特性,分析煅烧温度对粉体光学性能的影响。结果表明:Ce3+掺杂后CaF2的晶格参数发生改变,XRD图谱中(200)晶面的显现说明Ce3+进入晶格结构。CaF2-CeF3的固溶体可以用CexCa1-xF2+x的组成表述,其在掺杂浓度低于10%时保持氟化钙的萤石型晶格结构。得到的样品形貌为近似球形,平均粒径尺寸为25nm。吸收光谱的测试表明,CaF2/Ce3+:CaF2的吸收峰位于206nm、264nm及290nm。其中206nm属于基体及Ce3+共同的吸收峰,290nnm属于Ce3+的特征吸收峰。Ce3+:CaF2的激发峰位于306nm,发射峰中318nm属于5d1→2F5/2的跃迁,336nm属于5d1→2F7/2的能级跃迁。掺量大于5%时,出现浓度猝灭现象。煅烧温度为200℃时,粉体的荧光强度最高。
     为探寻制备Ce3+:BaF2透明陶瓷的新工艺,取代之前以粉晶为原料制备透明陶瓷的方法。本文采用沉淀法制备Ce3+:BaF2纳米粉体,研究不同反应顺序和F-浓度对制备Ce3+:BaF2粉体的影响。采用XRD,SEM,TEM,DSC-TG,ICP,FTIR等分析手段对粉体性质进行表征。结果表明:反向顺序的粉体为较完整的晶型结构,Ce3+进入晶格结构后引起衍射峰的低角度偏移;晶粒尺寸随反应F-浓度的增加下降,晶粒形貌从长条状逐渐转变为立方片状,-反应浓度为a3获得粒度分布均匀、分散性较高的粉体样品;Ce3+掺杂浓度超过a4后,沉淀中有BaCeOF3杂相生成;ICP测试表明稀土离子实际掺杂量接近理论值;吸收光谱为Ce3+特征吸收峰。
     以沉淀法制备的Ce3+:BaF2粉体为原料,本文采用热压法制备Ce3+:BaF2透明陶瓷。最终于温度T2,压力30Mpa条件下制备出Ce3+:BaF2多晶透明陶瓷。陶瓷表面腐蚀照片显示晶界清晰,无第二相粒子存在。烧结温度为T1时陶瓷中含有较多的晶粒内闭气孔,T3下烧结的样品气孔存在于晶界。X射线激发发光谱(XLE)测试结果表明BaF2陶瓷Ce3+较佳掺杂量为0.1%,小于其晶体中的掺杂量,发光产额为未掺杂样品的1.5倍;2mm厚度样品发光产额高于1.5mm厚度样品。紫外激发发光谱与X射线激发发光谱结果相似,其衰减时间随掺杂浓度的增加而降低。
Cerium doped calcium fluoride nanoparticles were synthesized by co-precipitation method using Ca(N03)2, KF and Ce(NO3)3as raw materials in deionzed water. Nanoparticles were characterized on their lattice structure, morphology and optical properties by means of X-ray diffraction, TEM, SEM, fluorescence spectrometer, respectively. The results indicated that the lattice parameter changed with Ce3+doped. The appearance of (200) peak in XRD diagram is a signature of Ce3+incorporation in CaF2host. The solid solution of CaF2-CeF3can be stated in CexCa1-xF2+x composition, which maintain fluorite structure with the doping content up to10%. Nanoparticles were spherical monodispersed and an average diameter of25nm. UV-Vis absorption spectra reveals that the peak located in206nm、264nm and290nm, among them the peak206nm can be ascribe to the absorption of the base CaF2and Ce3+ions, the peak290nm was due to the characteristics absorption of Ce3+ions. The excited peak was located in307nm, the emission of319nm and336nm were originated from the outermost electron of the Ce3+ions5d1→2F7/2and5d1→2F5/2energy level transition respectively. The photoluminescence intensity reached a maximum when the doping content was5mol%, and then was weakened due to the Concentration quenching. The process of calcination could also improve the optical properties, which the temperature200℃was the best.
     In order to prepare the Ce3+:BaF2transparent ceramic of high quality without the crystal powder, Ce3+:BaF2nano-particles prepared via co-precipitation have been investigated for reaction sequence and concentration of reactants. Nano-particles were characterized by means of X-ray diffraction, SEM, TEM, DSC-TG, ICP and FTIR respectively. The result indicated that the powder which synthesized by the condition of reverse reaction was crystalline precipitates in single phase, XRD peaks shifts to low angle. Grain size decreases with the higher F-concentration. The grain morphology from a long strip gradually transformed into the cubic flake. When the Ce3+doping content above a4mol, there were second-phase of BaCeOF3dispersed in the powder. ICP test results show that actual doping value was close to the theoretical value. The absorption peak was due to the characteristics absorption of Ce3+ions.
     The transparent ceramic was prepared by hot-prssing way inT2,30Mpa using the powder synthesized ahead. It can be seen that some closed pores existed in the grains from the picture of cross section. After superficial corrosion, grain boundary could be clearly seen from the microscope images, No second phase particles existd in the grain boundary.When the sintering temperature was inT1, pores were always located inside the grain, meanwhile the temperature above T3, the pores located in the corner of grain boundary. The X-ray induced luminescence (XLE) intensity reached a maximum when the doping content was0.1mol%, lower than in the ceramic prepared by powder crystal. The light yield of0.1mol%Ce3+:BaF2was1.5times than the sample without Ce3+doped. The emission spectrum which was under ultraviolet excitation was similar to the luminescence spectra of X-ray induced emission, the fluorescence decay time descend with the increasing Ce3+content.
引文
[1]Ogawa I, Hazama R, Miyawaki H, et al. Search for neutrino-less double beta decay of 48Ca by CaF2 scintillator[J]. Nuclear Physics A,2004.730(1-2):215-223.
    [2]Weber M J. Inorganic scintillators:today and tomorrow[J]. Journal of Luminescence,2002. 100(1-4):35-45.
    [3]Ishii M. and Kobayashi M. Single crystals for radiation detectors[J]. Progress in Crystal Growth and Characterization of Materials,1992.23(0):245-311.
    [4]Hofstadter R. The Detection of Gamma-Rays with Thallium-Activated Sodium Iodide Crystals. Physical Review[J],1949.75(5):796-810.
    [5]Lempicki A. The physics of inorganic scintillators[J]. Journal of Applied Spectroscopy,1995. 62(4):787-802.
    [6]洪广言.稀土发光材料基础与应用[M].北京:科学出版社.2011.
    [7]Schotanus P, Dorenbos P, van Eijk C W E, et al. Recent developments in scintillator research[J]. IEEE Transactions on Nuclear Science,1989.36(1):132-136.
    [8]Lian H Z, Liu J, Ye Z R, Shi C S. Synthesis and photoluminescence properties of erbium-doped BaF2 nanoparticles[J]. Chemical Physics Letters,2004.386(4-6):291-294.
    [9]Zhang Y W, Sun X, Si R, You L P, Yan C H. Single-Crystalline and Monodisperse LaF3 Triangular Nanoplates from a Single-Source Precursor[J]. Journal of the American Chemical Society,2005.127(10):3260-3261.
    [10]Wang X, and Li Y. Fullerene-Like Rare-Earth Nanoparticles. Angewandte Chemie International Edition[J],2003.42(30):3497-3500.
    [11]马多多,刘行仁Gd2O3:Eu纳米荧光体的晶体结构和相变[J].发光学报,1998(03):224-226.
    [12]Rahaman M N. Ceramic processing and sintering(second edition)[M], New York: Marcel Dekker Inc,2003.
    [13]Suk-Joong L.KANG, Sintering Densification,Grain Growth,and Microstructure[M], Elsevier butterworth heinemann,2005.
    [14]Van Loef E V D, Dorenbos P, Van Eijk C W E, et al. Scintillation properties of LaCl3:Ce3+crystals:fast, efficient, and high-energy resolution scintillators [J]. IEEE Transactions on Nuclear Science,2001.48(03):341-345.
    [15]Bensalah A, Mortier M, Patriarche G, et al. Synthesis and optical characterizations of undoped and rare-earth-doped CaF2 nanoparticles[J]. Journal of Solid State Chemistry, 2006. 179(8):2636-2644.
    [16]Bender C M, Burlitch J M. Synthesis and Fluorescence of Neodymium-Doped Barium Fluoride Nanoparticles[J]. Chemistry of Materials,2000. 12(7):1969-1976.
    [17]Grass R N and Stark W J. Flame synthesis of calcium-, strontium-, barium fluoride nanoparticles and sodium chloride[J]. Chemical Communications,2005(13):1767-1769.
    [18]Joubert M F. Photon avalanche upconversion in rare earth laser materials[J]. Optical Materials,1999.11(2-3):181-203.
    [19]Bierig R W, Weber M J, and Warshaw S I. Paramagnetic Resonance and Relaxation of Trivalent Rare-Earth Ions in Calcium Fluoride. II. Spin-Lattice Relaxation[J]. Physical Review,1964.134(6 A):A1504.
    [20]Cao C Y, Qin W P, Zhang J S, et al. Up-conversion white light of Tm3+/Er3+/Yb3+ tri-doped CaF2 phosphors[J]. Optics Communications.2008,281:1716-1719.
    [21]Fedorov P P, Osiko V V, Basiev T T, et al. Optical fluoride nanoceramic[J]. Journal of optical technology.2008,75(11):728-736.
    [22]Doualan J L, Camy P, Moncorge R, et al. Latest developments of bulk crystals and thin films of rare-earth doped CaF2 for laser applica tions[J]. Journal of fluorine chemistry.2007,128:459-464.
    [23]Yamagaa M, Yabashia S, Masuia Y, et al. Optical, infrared and EPR spectroscopy of CaF2:Ce3+ crystals co-doped with Li+ or Na+[J]. Journal of Luminescence,2004.108(1-4): 307-311.
    [24]Yoshikawa A, Kim K J, Aoki K, et al. Single Crystal Growth and Luminescence Properties of CeF3-CaF2 Solid Solution Grown by the Micro-Pulling-Down Method[J]. IEEE Transactions on Nuclear Science,2008.55(3):1484-1487.
    [25]Nepomnyashchikh A I, Radzhabov E A, Egranov A V, et al. Luminescence of BaF2-LaF3[J]. Radiation Measurements,2001.33(5):759-762.
    [26]Radzhabov E. Creation of trapped electrons and holes in alkaline-earth fluoride crystals doped by rare-earth ions[J]. Nuclear Instruments and Methods in Physics Research A,2002. 486:458-462.
    [27]Batygov S, Bolyasnikova L S, Demidenko V A, et al. BaF2:Ce3+scintillation ceramics[J]. Doklady Physics,2008.53(9):485-488.
    [28]Demidenko A A, Garibin E A, Gain S D, et al. Scintillation parameters of BaF2 and BaF2:Ce3+ ceramics[J]. Optical Materials,2010.32(10):1291-1293.
    [29]Sorokin N I, Karimov D N, Komar'kova O N, et al. Effect of heat treatment in HF atmosphere on the optical and electrical properties of Bap2 ceramics[J]. Inorganic Materials, 2009.45(10):1188-1192.
    [30]Shapochkin G M. Candidate's Dissertation (Moscow State University, Moscow,2009)
    [31]华素坤,仲维卓.BaF2晶体的结晶习性与缺陷[J].大工晶体学报,1992(02):131-136.
    [32]沈定中,刘建成,袁湘龙等.BaF2:Ce,La,Eu晶体的光谱性质[J].无机材料学报,1994(03):281-287.
    [33]陈玲燕,顾牡,王利明等.OH-和氧离子杂质对BaF2晶体辐照损伤的影响[J].无机材料学报,1995(04):399-405.
    [34]吕燕飞.不同粒径纳米碱土氟化物粉体的制备及热稳定性研究[D],浙江:浙江大学材料系,2006.
    [35]王琳琨.稀土掺杂氟化物的合成及谱带宽化的初探[D],吉林:长春理工大学无机化学,2008.
    [36]Xie T, Shuai L, Qing P, et al. Monodisperse BaF2 Nanocrystals:Phases, Size Transitions, and Self-Assembly[J]. Angewandte Chemie,2009.121(1):202-206.
    [37]Melcher C L, Manente R A, and Schweitzer J S. Applicability of barium fluoride and cadmium tungstate scintillators for well logging[J]. IEEE Transactions on Nuclear Science, 1989.36(1):1188-1192.
    [38]Visser R, Dorenbos P, van Eijk C W E, et al. Energy transfer processes involving different luminescence centres in BaF2:Ce[J]. Journal of Physics:Condensed Matter,1993.5(11): 1659-1680.
    [39]Benemanskaya G, Garibin E, Gusev Y, et al. Photosensors for PET scanner on the base of BaF2 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,2009.610(1):335-337.
    [40]Dorenbos P. Light output and energy resolution of Ce3+-doped scintillators[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2002.486(1-2):208-213.
    [41]Shannon R D, and Prewitt C T. Effective ionic radii in oxides and fluorides[J]. Acta Crystallographica Section B,1969.25(5):925-946.
    [42]Gektin A, Shiran N, Nesterkina V, et al. Luminescence of heavily Ce-doped alkaline-earth fluorides[J]. Journal of Luminescence,2009.129(12):1538-1541.
    [43]Pandurangappa C, Lakshminarasappa B N, and Nagabhushana B M. Synthesis and characterization of CaF2 nanocrystals[J]. Journal of Alloys and Compounds,2010.489(2): 592-595.
    [44]Nizamutdinov A S, Semashko V V, Naumov A K, et al. Photodynamic processes in CaF2 crystals activated by Ce3+ and Yb3+ ions[J]. Physics of the Solid State,2005.47(8): 1457-1459.
    [45]Andeen C, Link D, and Fontanella J. Cluster-associated relaxations in rare-earth-doped calcium fluoride[J]. Physical Review B,1977.16(8):3762-3767.
    [46]鲁尔兵,石春山CaF2:Ce3+中的电荷补偿问题的探讨[J].应用化学,1992(05):56-59.
    [47]Fedorov P P, Luginina A. A, Kuznetsov S V, et al. Nanofluorides[J]. Journal of Fluorine Chemistry,2011.132:1012-1039.
    [48]吕晋军,王静波,欧阳锦林等.三氟化铈的高温热稳定性及其分解产物对摩擦磨损性能的影响和作用机理[J].摩擦学学报,1996(04):43-49.
    [49]武汉大学.分析化学[M].北京:高等教育出版社,2000.
    [50]Zhang X M, Quan Z W, Yang J, et al. Solvothermal synthesis of well-dispersed MF2(M = Ca,Sr,Ba) nanocrystals and their optical properties[J]. Nanotechnology,2008.19(7).
    [51]郜振宁,元光,徐顺福等.水分子对硝酸根分子振动的影响[J].中国海洋大学学报(自然科学版),2011(12):104-108.
    [52]陈玲燕,顾牡,王利明等.OH-和氧离子杂质对BaF2晶体辐照损伤的影响.无机材料学报,1995(04):399-405.
    [53]Kuznetsov S V, Osiko V V, Tkatchenko E A, et al. Inorganic Nanofluorides and Related Nanocomposites[J]. Russian chemical Reviews,2006.75(12):1065-1082.
    [54]Dukel'ski K V, Mironov I A, Demidenko V A, et al. Optical fluoride nanoceramic[J]. Optical Material science and technology,2008.75(11):728-736.
    [55]Ikesue A, Kamata K, Yamamoto T, et al. Optical scattering centers in polycrystalline Nd:YAG laser[J], Journal of the Americal Ceramic Society.1997.80(6):1517-1522.
    [56]Kaysser W A, Aslan M, Arzt E, et al. Microstructure development and densification of ultrafine Y-TZP monoliths obtained by seeding-assisted chemical coprecipitation[J]. Journal of the European Ceramic Society.2000.20(2):169-176.
    [57]Nepomnyashchikh A I, Radzhabov E A, Egranov A V, et al. Recombination processes in crystals of solid solutions of Ba1-xLaxF2+x[J]. Nuclear Instruments and Methods in Physics Research Section A:Accelerators, Spectrometers, Detectors and Associated Equipment,2002. 486(1-2):390-394.
    [58]Janus S, Wojtowicz A J. Scintillation light yield of BaF2:Ce[J]. Optical Materials,2009. 31(3):523-526.
    [59]冯鹤,丁栋舟,李焕等.新型闪烁晶体Ce掺杂焦硅酸钇(YPS:Ce)的闪烁与热释光性能[J].无机材料学报,2010(08):801-805.
    [60]Dorenbos P, Visser R, van Eijk C W E, et al. X-ray and gamma ray luminescence of Ce3+ doped BaF2 crystals[J]. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment,1991.310(1-2):236-239.
    [61]Dorenbos P, Visser R, Hollander R W, et al. The effects of La3+and Ce3+dopants on the scintillation properties of BaF2crystals[J]. Radiation Effects and Defects in Solids:Incorporating Plasma Science and Plasma Technology,1991.119:87-92.
    [62]Itoh M, Nakagawa H, Kitaura M, et al. Photoluminescence of orthorhombic and cubic PbF2 single crystal[J]. Journal of Physics:Condensed Matter,1999,11:3003-3011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700