用户名: 密码: 验证码:
北京市西效地下水库调蓄能力与利用模式研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
长期以来,北京市地下水在城市供水发挥了重要的作用。70年代后期地下水供水量占到了总供水量的三分之二左右,在保障居民生活、工农业发展等方面发挥出了重要作用。目前北京天然水资源人均占有量不足300m~3,属于资源性严重缺水城市。20世纪90年代后,北京市经济社会快速发展,城市规模日益扩大,地下水过度开采,地下水资源严重亏损和地下水环境恶化同时出现,水资源紧张局面日益严重。水资源紧缺已经成为北京发展的最大瓶颈和影响社会稳定的重要因素。2010年北京市提出了建设有中国特色世界城市的发展目标,对水资源保障能力的要求大幅提高。为了缓解京津两地乃至华北水资源危机,中共中央、国务院决定建设南水北调中线工程。南水北调水源进京后,北京将形成由南水北调水、地表水、地下水和再生水组成的多水源供水格局。为了保障首都的供水安全,最大程度利用多水源,北京市将实行南水北调水、当地地表水、地下水和再生水等多水源统一调度、联合供水,科学、合理利用水资源,充分发挥水资源综合效益。
     地下水调蓄是南水北调进京后北京市水资源合理配置与科学调度的重要组成部分。利用地下空间建设地下水库,主要作用是人工调蓄水资源的时空分布,即在丰水年战略储存南水北调水、北京地表水库弃水等水资源;在枯水年、发生突发事件等特殊时间开采出来为北京市所用,有助于实现南水北调水的充分有效利用,进一步提高城市水资源应急能力和北京市供水安全保障程度。
     西郊地下水库位于永定河平原区冲洪积扇上,由于永定河冲洪积扇中上部岩土体为颗粒粗大、结构单一的厚层砂卵砾石,具有天然的阻水边界,拥有河道、砂石坑等水源回灌的场地,分布有地下水水源一、二、三、四、七厂等水源地,是水源优良的储存空间。由于紧靠南水北调水利工程设施,地理位置优越。北京市可以利用该空间建设地下水库储存南水北调尾水,提升永定河扇中上部地下水位,在枯水年等缺水时节,靠该区分布的众多地下水水源地特别是紧靠地下水库的三厂水源地开采出来加以利用,保证城市供水。
     本论文在北京市以往地下水调蓄工作成果的基础上,通过资料收集、野外调查、地下水数值模拟、综合研究等工作手段,对北京市西郊地下水库调蓄空间、回灌方式、回灌能力与回灌工程方案等关键技术开展研究。综合本次的研究成果,主要得出以下结论:(1)北京平原区永定河冲洪积扇中上部地带含水层为单一结构的卵砾石,颗粒粗、厚度大,是北京市主要城市水源地的分布区之一;向下游含水层转变为多层砂结构,构成天然的阻水边界,利用冲洪积扇中上部含水层可建设西郊地下水库作为北京市水资源调蓄地下储存空间。(2)根据建筑物地下工程设防水位、固体废弃物填埋场埋深资料,制作了工程限制和环境条件适宜的限制水位,与20世纪60-80年代地下水流场比较,1983年6月地下水位最接近工程与环境限制水位,可作为北京西郊地区地下水的可恢复水位上限。利用2010年地下水等水位线和限制水位对比,计算出西郊地下水库可恢复的调蓄空间分别为9.6×10~8m~3。(3)依据野外调查显示,西郊地下水库可利用南旱河河渠、永定河京原铁路桥-卢沟桥分洪闸段河道、稻田与马厂滞洪库以及西黄村、老山、桥户营等7个砂石坑,并且可利用南旱河、永定河引水渠两侧绿地内修建180眼大口井进行回灌。将现状回灌方式与历史试验的回灌方式参数对比,确定出目前西郊地下水库回灌方式总入渗能力41.19m~3/s。(4)北京市西郊地下水库调蓄水源包括南水北调尾水、本地地表水库弃放水、官厅水库-三家店之间山峡雨洪水以及永定河上游洪水。南水北调尾水、本地地表水库水、官厅水库-三家店之间山峡雨洪水回灌时可以人为调节流量;河流上游大洪水难以控制,河道行洪时属于被动地下水回灌。根据回灌水源的来源与特点,可将北京市西郊地下水调蓄模式分为可控水(模式I)和大洪水(模式II)两种模式。(5)西郊地下水库调蓄模式I可建设南旱河、永定河引水渠两个地下水回灌工程,加修大口井后工程总入渗能力分别为6.20m~3/s和12.73m~3/s;调蓄模式II可建设永定河、滞洪水库两个地下水入渗工程,工程总入渗能力分别为14.70m3/s和7.56m~3/s。(6)对西郊地下水库的回灌工程提出了利用现有回灌方式、增加大口井入渗方式及工程联合等七个水资源回灌方案,回灌工程方案最大回灌量可达2.93亿m~3,回灌后地下水位上升最大值达32m,影响面积最大达340km2~,并随时间延长影响范围逐渐扩大。回灌后5年地下水库水资源的储存率平均可达52.87%以上,模拟区储存率平均可达71.86%以上,回灌水将产生良好的资源效益。
     (7)在永定河冲洪积扇中上部回灌水质较好的南水北调水、本地地表水库水后,城近郊区地下水中总硬度、溶解性总固体和硝酸盐会随着优质水的回灌而降低,地下水水质超标现象将有所改善,对北京市水源三厂、四厂、七厂供水安全保障有很重要的意义。
Groundwater in Beijing has long played an important role in urban water supply. Especiallyin the late of1970s, groundwater accounted for about two-thirds of the total water supply,guaranteeing residential demand and development of industry and agriculture. The naturalwater resources per capita consumption in Beijing is less than300m~3, facing the problem oflacking water. After1990, Beijing's rapid development in economy and society, with theincreasing size of city, overexploitation of groundwater, results in serious deficit ofgroundwater resources and deterioration of groundwater environment, demonstrating crisis ofwater resources. Shortage of water resources has become the greatest bottleneck in thedevelopment of Beijing and stability of society. In2010, Beijing proposed the development goalof constructing International City with Chinese characteristics, demanding a substantialincrease in water resource guarantee capacity. In order to alleviate water crisis in Beijing,Tianjin and North China, the Party Central Committee and State Council decided to build theNorth Water Transfer Project.When the project come into operation, water supply in Beijing willbe composed by water from the North Water Transfer Project, local surface water, localgroundwater and renewable water. In order to guarantee water supply security of the capitaland make the best use of multiple water resources, the water from the North Water TransferProject, local surface water, local groundwater and renewable water is going to be dispatcheduniformly and supplied together, using water resources scientifically and reasonably andexploiting comprehensive benefit of water resources.
     Groundwater storage and regulation is going to be a critical component for water resourcesreasonable distribution and scientific dispatch when water from the North Water TransferProject arrives Beijing. Building groundwater reservoir using underground space is a methodto adjust water space-time distribution artificially, storing water from the North Water TransferProject and surplus water from reservoir in flooding year, and extracting in the dry year andfacing incidence, which is helpful in using water from the North Water Transfer Projecteffectively and completely, improving response to water crisis and water supply guaranteedegree.
     The western suburb groundwater reservoir is located in the Yongdinghe alluvial andpluvial fan. The site has good water storage capacity due to thick sand gravel layers, naturalwater resistant boundaries, permeable river course and sand gravel pits, and the1,2,3,4and7well fields. It is also a proper site for water storage and regulation for its location close to theNorth Water Transfer Project instrument. The site could be used to build a groundwaterreservoir to store surplus water from the North Water Transfer Project, raising groundwaterlevel in the middle-up stream of the Yongdinghe alluvial and pluvial fan, and exploitinggroundwater in the3rd well field near the groundwater reservoir to meet demand of the cityduring dry years.
     The recharge mode, recharge capacity and recharge projection method are analsizedbased on collected material, field investigation, groundwater numerical simulation andcomprehensive study in Beijing during the past years.
     Conclusions following could be drawn:
     The single and thick layer with coarse grains in the middle-up stream of the Yongdinghealluvial and pluvial fan is the main well fields for Beijing. The multiple sand layers in thedownstream in the Yongdinghe alluvial and pluvial fan is the natural water resistant boundary.Therefore, the aquifer in the middle-up stream of the Yongdinghe alluvial and pluvial fan couldbe used to build groundwater reservoir.
     The groundwater level in June of1983, which was close to the environment andengineering warning line compared with groundwater level between1960s and1980s, couldbe set as recovery groundwater level of Beijing Plain. The storage volume of groundwaterreservoir was calculated to be9.6×108m3based on groundwater level in2010and recoverygroundwater level.
     Seven pits in Nanhanhe river course, the Jingyuan railway bridge over Yongdinghe riverand Lugou bridge flood diversion sluice river course, Daotian and Machang flood detentionreservoir, Huangcun, Laoshan and Qiaohuying and180large diameter wells in Nanhanhe,green land along the sides of Yongdinghe inlet channel to reject. The total recharge capacity ofthe western groundwater reservoir was calculated to be41.19m3/s based on the comparisonof historical and current recharge experiment results.
     The water source will be composed by the surplus water from the North Water TransferProject, surplus water from local reservoir and flood from the gorges between Guantingreservoir and Sanjiadian reservoir and flood from the Yongdinghe. The flow rate could beadjusted artificially when surplus water from the North Water Transfer Project, surplus waterfrom local reservoir and flood from the gorges between Guanting reservoir and Sanjiadianreservoir will be used, but flood from the Yongdinghe could not be controlled, which means apassively recharge. Controllable water source (mode I) and great flood (mode II) could beclassified due to source and characteristics of recharge water.
     The total recharge capacity of the project could calculated to be6.20m3/s and12.73m3/swhen large diameter wells will have been built in Nanhanhe and inlet channel of Yongdingheunder the mode I. The total recharge capacity of the project could calculated to be14.70m3/sand7.56m~3/s when groundwater reservoir will have been built in Yongdinghe and flooddetention reservoir under the mode II.
     Seven recharge modes, including current mode, increasing large diameter wells andprojection-union, were proposed, the total recharge capacity of the recharge projection wascalculated to be2.93×108m~3. Groundwater level will rise32m, the influence area will be340km2, and the influence area will be widen gradually. The average storage rate in thegroundwater reservoir could be52.87%after5years' recharge and the average storage ratecould be71.86%in the simulation region. The recharge water could create great benefit in thefuture.
     Total hardness, TDS and nitrate of groundwater in City suburb can decrease when upperand middle section of Yongdinghe alluvial and pluvial fan is recharged by high quality waterfrom the North Water Transfer Project and surplus water from reservoir in flooding, and thewater quality beyond standard is improved subsequently, which has significance onguaranteeing water supply of the third, fourth and the seventh water plants.
引文
[1]De Vries J J,Simmers I.Groundwater recharge: an overview of processesand challenges[J].Hydrogeology J,2002,10(1):5-17.
    [2]中日地下水库建设技术交流研讨会交流材料,2000(2).
    [3]Aquifer storage and recovery(ASR):a strategic cost-effective facilityto balance water production and demand for Sharjah.Desalination174(2005)193-204.
    [4] Zhuping Sheng,An aquifer storage and recovery system with reclaimedwastewater to preserve native groundwater resources in ElPaso,Texas.Journal of Environmental Management75(2005)367–377.
    [5]吴忱,王子惠.南宫地下水库的古河流沉积与古河型特征[J].地理学报,1982,37(3):317-324.
    [6]李呈义,李道真.八里沙河地下水库拦蓄调节地下水技术试验研究[J].山东水利科技,1995(2):1-5.
    [7]刘溱蕃,孟凡海.龙口市滨海地下水库系统工程[J].勘察科学技术,2003,(6):47-52.
    [8]李伟,束龙仓等.济宁市地下水库特征参数分析[J].水科学进展,2005:65-71.
    [9]邓继昌.傅家桥地下岩溶水库的可行性研究[硕士论文D].青岛,中国海洋大学:2004.
    [10]李兴云,刘辉.大沽河水源地保护对策的建议[J].水资源保护,1996(3):60-62.
    [11]李志杰,刘莹.大连市龙河地下水库施工流程优化和安全保证分析[J].西部探矿工程,200(5):104-106.
    [12]李亚新,慕山,秦延军等.大庆市地下水库建设的分析与探讨[A].地下水库建设学术论会论文集[C],南京,2005(4):26-32.
    [13]戴长雷,迟宝明,地下水库调蓄能力分析[J].水文地质工程地质,2003(2):37-40.
    [14]郑德凤,王本德.地下水库调蓄能力综合评价方法讨论[J].水利学报,2004(10):56-62.
    [15]郑德凤,王本德.流域防洪系统中地下水库调蓄能力分析与计算[J].大连理工大学学报,2005,45(1):132-137.
    [16]杜新强,大庆市地下水位降落漏斗区水资源人工调蓄关键技术研究[博士论文D].吉林,吉林大学,2006.
    [17]王文科,孔金玲,王钊等.关中盆地秦岭山前地下水库调蓄功能模拟研究[J].水文地质工程地质,2002(4):5-9.
    [18]王宏,娄华军,田廷山等.SWAT/GMS联合模型在华北平原地下水库研究中的应用[J],世界地质,2005,24(4):368-372.
    [19]王新娟,许苗娟,周训.北京市西郊区地表水地下水联合调蓄模型研究[J].勘察科学技术,2005.
    [20]刘记来,刘超,黄天明.基于调蓄试验及数值模拟的北京市西郊地下水库人工补给效果评估[J].水文,2010,30(3):33-37.
    [21]林国庆,郑西来,李海明.地下水库人工补给的模型研究—以大沽河地下水库为例[J].中国海洋大学学报,2005,35(5):745-750.
    [22]张保祥,刘青勇,孟凡海.基于GIS的黄水河地下水库实时调度管理系统与数值模拟研究[J].地下水,2005,27(3):162-165.
    [23]北京市地矿局水文地质工程地质公司.北京西郊地下水库试验研究报告
    [R].1985.
    [24]北京市水文地质工程地质大队.北京市潮白河牛栏山地区水资源地下调蓄试验研究报告[R].1987.
    [25]北京市地质调查研究院、河北地质调查研究院、中国地质大学(北京)、北京市水文地质工程地质大队.首都地区地下水资源和环境调查评价
    [R].2003.
    [26]北京市水文地质工程地质大队.南水北调(北京段)环境地质问题调查评价
    [R].2004.
    [27]北京市地质工程勘察院.南水北调来水与地下水联合调度与调蓄规划
    [R].2006.
    [28]北京市水利规划设计研究院.永定河绿色生态走廊建设规划[R].2009.
    [29]北京市水文地质工程地质大队.西郊(水源三厂地区)人工补给地下水试验研究阶段小结[R].1966.
    [30]北京市地质局水文地质大队.北京西郊西黄村砂石坑地下水人工补给试验研究总结报告[R].1980.
    [31]北京市水文地质工程地质大队.西黄村砂石坑地下水人工回灌工作总结(1995年4-8月)[R].1996.
    [32]北京市水文地质工程地质公司.首都钢铁公司大口径井地下水人工回灌初期试验报告[R].1981.
    [33]北京市水文地质工程地质公司.北京市地下水深井回灌技术试验研究报告[R].1988.
    [34]北京市水利科学研究所.城市雨水资源利用模式及技术集成研究[R].2006.
    [35]北京市规划委员会和北京市人民防空办公室.北京中心城中心地区地下空间开发利用规划(2004-2020年)[R].2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700