用户名: 密码: 验证码:
小直径钢管排桩加固边坡的理论分析与试验验证
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小直径钢管排桩这一新型环保边坡支挡结构具有加固见效快、横向承载力较强、施工快捷安全、经济效益好等优点。由于缺乏其支挡抗滑机理、桩土作用、计算方法等方面研究,严重制约了作为永久支挡结构的应用。本文利用理论分析、试验验证和数值分析等手段,主要研究了小直径钢管排桩的抗滑机理、实用设计计算方法和承载力影响因素,得出了以下研究成果:
     1.小直径钢管排桩加固边(滑)坡的抗滑作用机理表现为:一是钢管桩骨架体系具有优良的抗剪、抗拉、抗压性能可抵御较大推力,并约束桩间岩土体,使其体处于三向应力状态,土体强度得到了较大提高;二是刚度较大的钢筋混凝土系梁具有较好协调、传递内力作用,“强梁弱桩”的组合结构与桩前土体共同发挥较强支挡能力;三是高压注浆对钢管桩桩体、桩周土体固化增强。
     2.根据小直径钢管排桩的受力特点,给出了考虑桩土相互作用空间效应的平面刚架分析模型,基于Winkler弹性地基梁理论,推导了桩身内力变形计算公式;由桩间“抗剪切土体”的溜出检算,得出了钢管桩合理桩间距的计算公式;给出了小直径钢管排桩按抗拔和受弯曲条件确定锚固深度的计算方法;在此基础上,提出了小直径钢管排桩十五步设计法。
     3.桩间距与桩径之比L/d在5~15变化时,排桩的抗滑能力不断下降,L/d=15时桩间土已发生溜出破坏。经过不同桩间距排桩内力变形的对比分析,并结合大量实际工程经验:对于非软塑-流塑状粘性土、混合土,建议L/d取5~12即桩间距取1~2m,桩土相互作用能较好的发挥抗滑能力。
     4.当钢管排桩后推力较小时,钢管桩内力变形随排间距增大变化微弱,随着荷载增大,内力变形随钢管桩排间距增大表现出先增大后减小的规律,排间距在1m~2m即b/d为6~12时,与其它排间距相比,桩土复合体发挥的抗滑力增大。因此,考虑忽略排间的群桩效应,建议b/d取值为8~12即1~2m。
     5.锚固段长度对钢管排桩的水平位移影响较小,而对锚固段的内力影响较大,随着锚固段长度增大,桩体锚固段内力逐渐减小。当h/l在1/4~1/3变化时,排桩受力较为合理,建议钢管排桩锚固长度控制在1/4~1/3。
     6.桩间岩土层物理力学参数黏聚力c、内摩擦角φ、压缩模量E对桩岩土复合体的抗滑能力影响较大,随着c、φ、E增大,桩前抗力增大,土拱效应也越明显,相应的排桩提供抗滑力增大,其中桩周土体压缩模量E影响最为明显。
Small diameter steel pipe row-pile is a new type of environmental slope retaining structure which has advantages of fast retaining effect, strong horizontal bearing capacity, quick and safe construction and good economical benefits. Due to lacking researches of anti-sliding mechanism, pile-soil acting mechanism and calculation method etc, it is severely restricted to be a permanent retaining structure. Making use of theoretical analysis, calculation proof and numeral analysis etc, the anti-sliding mechanism, practical design and calculation method and factors relevant to bearing capacity are studied in this article, the results are as follows:
     1. The mechanism of small diameter steel pipe row piles register as:firstly, the steel row-pile skeleton system has excellent properties of shearing resistance, tensile resistance and compressive resistance etc, which could withstand a comparatively large thrust and restrict rock and soil mass among piles into a triaxial state of stress which comparatively increases the soil strength sharply; secondly, the concrete coupling beams with strong stiffness have good coordination and transfer effect of internal forces, the combination of "strong beams and weak piles" and the soil body in front of the row-piles have a comparatively strong resistance effect; finally, high pressure grouting solidify the piles and soil, which makes them stronger.
     2. According to forcing characteristics of small diameter steel pipe row-pile, plane rigid frame model considering pile-soil three-dimensional effect is put forward. Based on Winkler beam on elastic foundation theory, deformation computation formula of pile internal force is derived; reasonable pile spacing is obtained from "anti-shearing soil body" sneak out calculation; the anchorage depth calculation method is derived from row-pile anti-plucking and anti-bending factors; on the basis of those formula, fifteen-step design method of small diameter steel pipe row-pile is raised.
     3. when the ratio between pile spacing and pile diameter L/d is5-15, the row-pile anti-sliding capacity is declining, when L/d=15, soil among row-pile is sneaking out. Through row-pile internal force and deformation comparative analysis of different row spacing combined with mass engineering projects experiences:for non-soft plastic to fluid plastic cohesive soil, composite soil, the value of L/d is suggested5~12, that is pile spacing is1-2m, pile-soil could bring comparatively good anti-sliding capacity.
     4. When the thrust behind row-piles is comparatively small, the variance of pile internal force and deformation is very small along the increase of pile spacing, but along the increase of load, the internal force and deformation represents from increase to decrease along the increase of pile spacing, when pile spacing is1~2m, that is b/d is6-12, compared with other row spacing, pile-soil composite body display a larger anti-sliding. So, considering the group pile effect ignoring row spacing, the value b/d is suggested8-12, that is1~2m.
     5. The row-pile horizontal displacement is influenced comparatively small by anchorage depth, yet, the row-pile internal force of anchorage section is influenced comparatively large by anchorage depth, the internal force decreases along the increases of anchorage depth. When h/l varies from1/4-1/3, the internal force of row-pile is much reasonable, it is suggested that anchorage depth should be controlled into1/4-1-3.
     6. The anti-sliding capacity is largely influence by cohesion c, internal friction angle φ, modulus of compression E, along with the increase of c, φ, E, the resisting force in front of row-pile is increasing, the soil anchoring effect is more obvious, correspondingly, the row-pile resisting force is increasing, among c, φ, E, E is the most obvious effective factor.
引文
[1]马青杰.注浆与钢管微型桩组合结构加固滑坡离心模型试验研究[D].成都:西南交通大学,2009.
    [2]唐传政,舒武堂.微型钢管群桩在基坑工程事故处理中的应用[J].岩石力学与工程学报,2005,24(S2):5459-5463.
    [3]何世达,周友华.微型钢管桩在南宁市鼎盛大厦基坑支护中应用[J].岩土工程界,2006,9(10):47-48.
    [4]杨秀竹,雷金山,夏力农.注浆与钢管桩组合方案在电厂跌水井基坑支护中的应用[J].西部探矿工程(岩土钻掘工程),2007,05:18-19.
    [5]张维正.钢管桩与注浆技术在某基坑支护中的应用[J].西部探矿工程,2007,01:37-39.
    [6]李国亮,金福喜,张可能.高压双液注浆与钢管桩在深基坑支护中的应用[J].广东建材,2010,05:99-101.
    [7]姚元涛.向家坝右岸蠕滑边坡钢管桩加固技术研究[J].人民长江,2008,39(07):41-43
    [8]李玉峰.钢管桩注浆固结法治理顺层滑坡的工程实践[J].企业家天地,2009,04:238-239.
    [9]肖春锦.微型钢管桩用于滑坡治理及理论分析[J].路基工程,2010,04:94-97.
    [10]孙书伟.微型桩结构加固边坡受力机制和设计计算理论研究[D].北京:中国铁道科学研究院,2009.
    [11]Bruce D A, Cadden A W, Sabatini P J. Practical Advice for Foundation Design Micropiles for Structural Support [C]//GSP 131 Contemporary Issues in Foundation Engineering, ASCE. [S.1.]: [s.n.],2005:1-25.
    [12]Tom Armour, Paul Groneeck, James Keeley, et al. Micropile Design And Construction Guidelines Implementation Manual Priority Technologies (PTP) Project [M]. Publication NO.FHWA-SA97-070.2000.
    [13]JAMP. Design and Execution Manual for Seismic Retrofitting of Existing Pile Foundation with High Capacity Micropiles. Foundation Engineering Research Team, Structures Research Group, Public Works Research Institute, Japan, 2002.
    [14]Aomar Benslimane. Dynamic Behavior of MicroPiles Systems Subjected to Sinusoidal Ground Motion[D]. Doctor Dissertation of Polyteehnie University Januaay, 2000:1-2.
    [15]Sung June Lee. Behavior of A Single Micropile in and Under Cyclic Loads[D]. Doctor Dissertation of University of Illinois. Urbana. 2004:3.
    [16]铁道部第二勘测设计院,《抗滑桩设计与计算》[M].北京:中国铁道出版社,1983.9.
    [17]丁光文,王新.微型桩复合结构在滑坡整治中的应用[J].岩土工程技术,2004,18(1):47-50.
    [18]朱宝龙.类软土滑坡工程特性及钢管压力注浆型抗滑挡墙的理论研究[D].成都:西南交通大学,2005.
    [19]史佩栋.桩基工程手册:桩和桩基础手册[M].北京:人民交通出版社,2008.7.
    [20]冯君,周德培,江南,等.微型桩体系加固顺层岩质边坡的内力计算模式[J].岩石力学与工程学报,2006,25(02):284-288.
    [21]周德培,王唤龙,孙宏伟.微型桩组合抗滑结构及其设计理论[J].岩石力学与工程学报,2009,28(07):1353-1362.
    [22]肖世国,鲜飞,王唤龙.一种微型桩组合抗滑结构内力分析方法[J].岩土力学,2010,31(08):2553-2559.
    [23]Reese L C, Welch R C. Lateral of Deep Foundation in Stiff Clay[J]. Journal of the Geoteehnieal Engineering Division, 1975,101(7):633-649.
    [24]Reese L C, Cox W R, Koop F D. Field Testing and Analysis of Laterally Loaded Piles in stiff Clay[A]. Proeeedings of 7th Offshore Technology Conferenee[C], Houston, Texas:1975,2: 671-690.
    [25]Reese L C, Cox W R, Koop F D. Analysis of Laterally Loaded Piles in Sand[A]. Proeeedings of 6th Offshore Teehnology Conferenee[C]. Houston, Texas:1974,2:473-483.
    [26]孙书伟,朱本珍,郑静.基于极限抗力分析的微型桩群加固土质边坡设计方法[J].岩土工程学报,2010,32(11):1671-1677.
    [27]周德培,肖世国,夏雄.边坡工程中抗滑桩合理桩间距的探讨[J].岩土工程学报,2004,26(01):132-135.
    [28]张建勋,陈福全,简洪钰.被动桩中土拱效应问题的数值分析[J].岩土力学,2004,25(02):174-184.
    [29]蒋良潍,黄润秋,蒋忠信.黏性土桩间土拱效应计算与桩间距分析[J].岩土力学,2006,27(03):445-450.
    [30]周应华,周德陪,冯君.推力桩桩间土拱几何力学特性及桩间距的确定[J].岩土力学.2006,27(3):455-462.
    [31]曹平,朱宝龙,陈强.微型圆桩加固平面滑坡的桩间距分析[J].西安科技大学学报,2009,29(05):626-630.
    [32]Richards JR, ThomasD, RothbauerMark J. LateralLoadson Pin Piles (micropiles) [C]. Proceedings ofSessions of the Geosupport Conference: Innovation and Cooperation in Geo. Reston:Geotech-nical Special Publication, ASCE, 2004.
    [33]Thompson M J. Experimental Load Transfer of Piles Subject to Lateral Movement [C]//2004 Transportation Scholars Conference. Iowa:Iowa State University, 2004.
    [34]龚健,陈仁朋,陈云敏,等.微型桩原型水平荷载试验研究[J].岩石力学与工程学报,2004,23(20):3541-3546.
    [35]闫金凯,殷跃平,门玉明,等.滑坡微型桩群桩加固工程模型试验研究[J].土木工程学报,2011,44(4):120-128.
    [36]闫金凯,殷跃平,门玉明.微型桩单桩加固滑坡体的模型试验研究[J].工程地质学报,2009,17(5):669-674.
    [37]孙书伟,朱本珍,马惠民.框架微型桩结构抗滑特性的模型试验研究[J].岩石力学与工程学报,2010,29(S1):3039-3044.
    [38]孙书伟,朱本珍,马惠民,等.微型桩群与普通抗滑桩抗滑特性的对比试验研究[J].岩土工程学报,2009,31(10):1564-1570.
    [39]鲜飞.微型桩组合结构模型试验研究[D].成都:西南交通大学,2010.
    [40]王恭先,徐峻龄,刘光代.滑坡学与滑坡防治技术[M].北京:中国铁道出版社,2004.
    [41]李海光.新型支挡结构设计与工程实例[M].北京:人们交通出版社,2004.
    [42]《铁路特殊路基设计规范》编写委员会.铁路特殊路基设计规范[S].TB10035-2006.
    [43]《公路路基设计规范》编写委员会.公路路基设计规范[S].JTGD30-2004.
    [44]刘新荣,梁宁慧,黄金国,等.抗滑桩在边坡工程中的研究进展及应用[J].中国地质灾害与防治学报,2006,17(1):56-62.
    [45]肖世国,周德培,宋从军.岩石高边坡工程中埋入式抗滑桩的应用[J].岩土工程学报,2003,25(5):638-641.
    [46]孙勇.桩前预留土体对抗滑桩影响的分析与计算研究[J].水文地质工程地质,2008,1:58-63.
    [47]MA Jianlin, XIANG Bo, HE Yunyong, ZHUANG Weilin, ZHU Lin. Computation Theory and Filed Test on Small Diameter Steel Pipe Piles in the Reinforcement of Slope[C]. The Third International Conference on Transportation Engineering, ICTE 2011:1227-1233.
    [48]刘永明.小直径钢管排桩抗滑机理分析及计算理论[D].成都:西南交通大学,2008.
    [49]张正义.小直径钢管排桩抗滑计算理论及离心模型试验研究[D].成都:西南交通大学,2009.
    [50]刘静.基于桩土共同作用下的抗滑桩的计算与应用研究[D].长沙:中南大学,2007.
    [51]Allen Cadden, Jesus Gomez, Donald Bruce, Tom Armour. Micropiles:Recent Advance And Future Trends[A]. Deep Foundation. ASCE, 2004:140.
    [52]ZHANG Lianyang,Silva F.,Grismala R..Ultimate Lateral Resistance to piles in Cohesionless Soils[J]. Journal of Geotechnical and Geoenvironmental Engineering,2005,131(1):78-83.
    [53]Tomio Ito, Tamotsu Matsui, Won Pyo Hong. Design Method for Stabilizing Piles Against Landslide-One Row of Piles[J]. Soil and Foundations,1981,21(1):21-37.
    [54]David R.Shields. Buekling of Micropiles[J]. Journal of Geotechnical & Geoenviromnental Engineering,2007,133(3):334-337.
    [55]Juran H, Benslimane A, Bruce D A. Slope stabilization by micropile reinforcement[J]. Landslides, 1996,1715-1726.
    [56]Lizzi F. Special Patented Systems of Underpinning and more Generally, Subsoil Strengthening by Means of Pali Radice(Root Piles) with Speeial Reference to Problems, Arising from the Construction of Subways in Built-up Area[R]. Special Lecture given at university of Illinoi at Urbana-Champaign.1971.
    [57]Misra A, Chen C H, Oberoi R, et al. Simplified analysis method for micropile pullout behavior[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2004, 130:1024-1033.
    [58]HassiotisS, ChameauJL, GunaratneM. Design method for stabilization of slopes with Piles[J]. Journal of Geotechnical and Geoenvironmental Engneering, 1997, 123(4):314-322.
    [59]Misra A, Roberts LA, Oberoi R, et al. Uncertainty analysis of micropile pullout based upon load test results[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2007, 133, 1017-1025.
    [60]Lee S J. Behavior of a single micropile in sand under cyclic axial loads[M]. University of lllilois at Urbana-Champaign, 2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700