用户名: 密码: 验证码:
大跨度煤仓上部双层网壳结构的设计与稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着社会经济的发展,大跨度网壳结构广泛应用于工业与民用建筑中,网壳结构具有刚度大、自重轻、造型丰富美观、综合技术指标好等特点,但是跨度大、厚度薄、重量轻等成为网壳结构总得发展趋势,因此结构的稳定性问题成为重点研究内容。
     本文以某电厂煤仓上部双层网壳结构为计算分析模型,运用有限元软件ANSYS,对网壳结构的线性及非线性屈曲性能进行了计算分析,从结构杆件选择、屈曲性能、温度影响三个方面进行探讨,在屈曲性能研究中分别研究了非线性因素、支座约束情况、初始缺陷以及荷载分布形式对结构极限承载力的影响。
     研究表明:结构支座水平反力主要由风荷载、温度作用控制;而在杆件选择上,支座的设置方式是决定因素;支座对结构稳定系数的影响主要取决于支座刚度,结构将支座约束简化为固定铰接偏于安全;考虑初始缺陷将使极限承载能力降低,初始缺陷数值的选择宜在L/300~L/200范围之内;结构在水平荷载作用下的稳定性能低于竖向荷载,二者的稳定系数相差54.4%,半跨荷载下的屈曲荷载系数要高于全跨,极限承载力相差30%;常温下温度变化对结构的稳定性影响很小,但温度对结构内力尤其是底层杆件内力的影响却是工程中必须考虑的因素;在内外温差作用下,外部环境温度对结构内力分布影响较大,内部温度对结构杆件变形起主要控制作用;温差达到100°C时,结构首先在顶部发生屈曲,在温差达到115°C时,结构发生破坏,由此可见温度作用一旦超过临界作用值后,结构在短时间内将会有由于温度的升高而破坏的可能。
     以网壳结构优化设计为基础,综合考虑支座约束条件对结构的稳定性影响是本文的一个创新点;针对煤仓内部堆煤自燃情况,运用钢结构防火规范相关计算,根据实际情况考虑内外温差作用对结构受力性能的影响是本文另外一个创新点。
With the development of socioeconomic, large-span latticed shell structuresare widely used in industrial and civil architecture. Latticed shell structurespossess high stiffness, light weight and models with rich esthetics features.However, with the current trend of the shell structures having larger span anddecreasing thickness and weight, its structural stability has become a major focusof research.
     This paper takes the double-layer latticed shell upper coal bunker of powerplants for computational analysis using finite element software ANSYS. Analysison the latticed shell structure’s linear and nonlinear buckling property isperformed from three aspects of structural member selection, buckling propertyand temperature effect. During this analysis, a study is done on the respectiveeffects of nonlinearity, support restraint conditions, initial defect and load distribu-tion on the structures ultimate bearing capacity.
     The research shows that: The magnitude of the horizontal support reaction ismainly controlled by the wind and temperature load; For member selection, thetype of support is the deciding factor; The effect of supports on the coefficient ofstructural stability is dependent on the supports rigidity; Simplifying the supportrestraint as fixed supports tends to be safe; Initial defect reduces the ultimatebearing capacity, it’s appropriate value should be selected within the rangeL/300~L/200; The stability of the structure under horizontal loads is inferior tothat under vertical loads, their coefficients of stability differ by54.4%; Thebuckling load factor for half span loading exceeds that of full span loading by30%; At normal atmospheric temperature, the effect of temperature variations onstructural stability is very small, however, the temperature effect on the structuralmembers internal force especially of the lower deck members is a must consider;For double-layer latticed shell structure, the external environment temperature hasa big effect on the structural internal force, and the inside temperature plays animportant role in the structural deformation; When the temperature reaches100°C,the structure buckles at the peak, then when the temperature reaches115°C, thestructure will get damaged, thus it can be seen that once temperature exceeds thecritical value, in a short time the structure can undergo possible destruction due tothe temperature rise.
     The research considers latticed shell structure optimization design as itsobjective, comprehensive consideration of the effect of support restraint conditionon stability is one of this research innovations; Cases of the coal pile inside thebunker undergoing spontaneous combustion has been considered as provided inthe relevant codes for steel structure fire protection in related calculation. In linewith practical condition, the consideration of the influence of internal and externaltemperature differences on the structural members mechanical behavior is thispaper’s another innovation.
引文
[1] Liu ren-huai, Li Dong, Nie Guo-hua, Cheng Zhen-qiang. Non-linear buckli-ng of squarely-latticed shallow spherical shell [J]. Int J. Non-linear Mechan-ics,1991,26(5):549-565.
    [2]徐加初等.双层柱面网格扁壳的非线性稳定性分析[J].工程力学,2004,21(2):20-23.
    [3]卢保红等.双层球面网格扁壳的非线性稳定性分析[J].暨南大学学报,2005,26(1):60-63.
    [4]杜冰等.大跨度双层网壳的非线性动态效应[J].力学与实践,2006,28(4):46-50.
    [5]董石麟等.单双层球面扁网壳连续化方法非线性稳定理论临界荷载的确定[J].工程力学,2004,21(3):6-14.
    [6]王志新等.扁柱面网壳的非线性动力学行为[J].应用数学和力学,2007,29(2):135-140.
    [7]刘人怀.网壳结构的非线性弯曲稳定和振动[M].北京:科学出版社,2011:81-86.
    [8] P. sharifi, E. P. Popov. Nonlinear Buckling Ansys of Sandwish Arches [J], J.Eng. Mesh. Div.,1971,97:1397-1412.
    [9].L. Batoz, G. Dhatt. Incremental Displacement Algorithm for NonlinearProblems [J], Int. J. Num. Meth. Eng,1979,14:1262-1266.
    [10] E. Riks. An Incremental Approach to the Solution of Snapping and BuckingProblems [J], Int. I. Solid structures,1979,15:529-551.
    [11]胡学仁.穹顶网壳的稳定计算[C].第三届空间结构学术交流会论文集,第二卷,1986.
    [12]刘峰,李丽娟.空间网壳结构的稳定性分析[J].华南理工大学学报,2003,31(增):26-29.
    [13]贺拥军,董石麟.网壳结构平衡路径全过程跟踪的新策略[J].工业建筑,2000,30(12):51-53.
    [14]钱若军,王建,曾银枝.网壳结构稳定分析的建模[J].建筑结构学报,2003,24(3):10-15.
    [15]曹正罡,范峰,沈世钊.单层球面网壳结构弹塑性稳定性能研究[J].工程力学,2007,24(5):17-23.
    [16]黄斌,毛文筠.铺钢板肋环型网壳的稳定性研究[J].空间结构,2007,13(4):7-10.
    [17]王蕾等.局部双层网壳几何非线性分析[J].河北农业大学学报,2002,25(4):109-121.
    [18]陈务军等.带肋局部双层网壳的失稳特征研究[J].工程力学,2002,19(4):61-66.
    [19]赵淑丽.四点支承单层柱面正交异型网壳的几何非线性静动力稳定分析
    [D].河北农业大学,2006.
    [20]程春兰.大跨度单层椭球面网壳结构的稳定性分析[D].同济大学,2008.
    [21]刘祚秋,刘思威.施威德勒型球面网壳结构非线性屈曲分析及优化设计[J].中山大学学报(自然科学版),2008,47(增2):85-88.
    [22]孙超等.刚度对单层叉筒网壳结构的几何非线性稳定的影响[J].河北农业大学学报,2009,32(3):103-108.
    [23]张年文,董石麟,黄飞业.考虑几何非线性影响的单层网壳优化设计[J].空间结构,2003,9(1):31-34.
    [24]沈世钊,陈昕.网壳结构稳定性[M].北京:科学出版社,1991.
    [25] C. A. Schenk, G. I. Schueller. Buckling analysis of Cylindrical Shells withRandom Geometric Imperfections [J]. International Journal of Non-LinearMechanics.2003,38:1119-1132.
    [26] A. H. Heinen, J. Biillesbach. On the Influence of Geometric Imperfectionson the Stability and Vibration of Thin-walled Shell Structures [J]. Internat-ional Joumal of Non-Linear Mechanics,2002,37:921-935.
    [27] Bulbul MYI. The geometric nonlinear behaviour of space structures withimperfect laterally loaded slender members [D]. University of Cambridge,1998.
    [28]曹正罡等.大跨度四边支承单层柱面网壳的稳定性能[J].哈尔滨工业大学学报,2010,42(10):1524-1529.
    [29]李忠学.初始几何缺陷对网壳结构静、动力稳定性承载力的影响[J].土木工程学报,2002,35(1):11-14.
    [30]夏锋林.单层椭球面网壳结构的静力稳定性分析[D].浙江大学.2004.
    [31]王卓等.初始几何缺陷对网壳结构线性动力反应的影响初探[J].四川建筑科学研究,2011,27(2):26-29.
    [32]金磊.考虑初始缺陷的单层球面钢网壳几何非线性稳定分析[D].上海大学,2005.
    [33]张宝勤.2008奥运羽毛球热身馆单层网壳结构选型与稳定性分析[D].北京工业大学,2006.
    [34]张爱林等.2008奥运羽毛球馆张弦网壳结构整体稳定分析中初始缺陷的影响研究[J].空间结构,2006.12(4):8-12.
    [35]陈东.网壳结构的缺陷稳定分析及安全性能研究[D].东南大学,2009.
    [36] Shiro Kato, Itaru Mutoh, Masaaki Shomura. Collapse of Semi-rigidly joint-ed reticulated Domes with Initial Geometric imperfections [J]. J. Constructi-onal Steel Research.1998,48:145-168.
    [37] Alfonso E. Lopez, Gerald K. Orrison. The effect of Joint Stiffness on the B-uckling Behavior of Reticulated Dome Structures [A]. Asia-Pacific Confere-nce on Shell and Spatial Structures, CCES-IASS[C]. May21-25,1996, Bei-jing.
    [38] SohnSD, KimSD, KangMM, LeeSG, SongHS. Nonlinear Instability Analys-is of Framed Spaces Tructures with Semi-rigid Joints[C]. In: Lightw-eightStructures in Civil Engineering (Proceedin-gs of the IASS Internation-alSymposium).2002:422–427.
    [39]范峰等.碗式半刚性节点网壳弹塑性稳定分析[J].哈尔滨工业大学学报,2010,42(10):1513-1518.
    [40]马会环,商文念.K8型半刚性节点网壳的弹塑性稳定分析[J].低温建筑技术,2008(1):79-80.
    [41]张竟乐.网壳节点刚度及其对整体稳定性的影响[D].上海交通大学,2003.
    [42]康菊,宋振森.节点刚度对有缺陷短程线球面网壳稳定性的影响[J].四川建筑科学研究,2008,34(1):42-46.
    [43]张传成,张宝勤,张爱林.节点刚度对2008奥运羽毛球热身馆单层网壳稳定性影响研究[J].世界地震工程,2007,23(3):32-40.
    [44]张竟乐,赵金城.节点刚度对凯威特型单层球面网壳稳定性的影响[J].空间结构,2004,10(2):43-45.
    [45]余贞江.节点刚度对单层球面网壳结构整体稳定性的影响[D].山东大学,2009.
    [46]马会环等.网架网壳结构半刚性节点试验研究[J].建筑结构学报,2010,31(11):65-118.
    [47] Aitziber Lopez, Inigo Puente, Miguel A. Serna. Direct Evaluation of the Bu-ckling Loads of Semi-rigidly Jointed Single-layer Latticed Domes Under-symmetric Loading [J]. Engineering Structures,2007,(29):101–109.
    [48]尹德钰,刘善维,钱若军.网壳结构设计[M].北京:中国建筑工业出版社,1996.
    [49]徐硕.组合体系网壳稳定性分析[D].武汉理工大学,2007.
    [50]韩强,文献民.边界条件对单层球面网壳结构性能的影响[J].河北建筑科技学院学报.2003,20(1):46-48.
    [51]周太全,华渊.江南大学体育馆网壳结构静动力特性分析[J].江南大学学报,2009,8(3):335-339.
    [52]王秀丽等.强震作用下带屈曲约束支撑的K型网壳整体结构性能分析[J].北京交通大学学报,2011,35(1):61-67.
    [53]洪渊.某大型单层网壳结构的支座形式分析[J].山西建筑,2009,35(11):61-62.
    [54]陈青术,颜天柱,蒋龙.球面网壳稳定性与自振性能分析[J].四川建筑2007,27(6):135-137.
    [55]王磊.大跨复杂网壳与下部结构协同工作性能研究[D].兰州理工大学,2009.
    [56]董继斌.双层柱面网壳选型与设计[C].1996年度土建设计经验交流会资料集,煤炭工业设计情报土建专业站,1996.
    [57]陈孝珍,赵维涛.有限元法基础[M].北京:科学出版社,2009.
    [58]张亮泉等.CFRP平板网架结构极限承载能力研究[J].低温建筑技术,2008,2:51-52.
    [59]陈骥.钢结构稳定理论与设计(第三版)[M].北京:科学出版社,2006.
    [60]王新敏.ANSYS工程结构数值分析[M].北京:人民交通出版社,2009.
    [61]中华人民共和国行业标准.JGJ61-2003网壳结构技术规程[S].北京:中国标准出版社,2005.
    [62]杨世铭,陶文铨.传热学(第三版)[M].高等教育出版社,2006.
    [63]孔祥谦,王传溥.有限单元法在传热学中的应用[M].科学出版社,1986.
    [64]李增华.煤炭自燃的自由基反应机理[J].中国矿业大学学报,1996,25(3):111-114.
    [65]徐芝纶.弹性力学(上册)[M].北京:高等教育出版社,2002.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700