用户名: 密码: 验证码:
双馈风力发电系统并网低电压穿越技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在全球性能源危机以及大力扶植新能源产业的背景下,风力发电成为当今世界的研究热点。随着风力发电系统并网容量的不断增加,其在电力系统中所占比例也越来越大,风电机组在故障期间的运行特性对电网的影响愈发显著起来。当外部电网出现暂态电压波动时,风电机组能否保持连续并网状态便对整个系统的稳定性有至关重要的作用。当电网因为故障引起电压跌落时,如果风电机组出现大规模脱网的情况,便会对故障期间脆弱的电网带来二次冲击,严重时会直接导致电压崩溃,给电力系统的安全稳定运行带来更大的挑战。因此,提高风电机组的不间断运行能力对电网电压出现暂态期间的正常运行具有非常重要的意义。
     本文以当前在国内外电网中所占比重最大的双馈风力发电系统为对象来研究风电机组的低电压穿越能力。本文首先详细分析了双馈风力发电系统的基本工作原理,分别建立了其在静止ABC坐标系和同步旋转d-q坐标系的数学模型,在此基础上设计了背靠背PWM变流器的控制策略并在PSCAD/EMTDC平台下对其进行了建模实现和仿真验证;然后在稳态数学模型的基础上通过拉氏正反变换建立起双馈风电机组的暂态数学模型,并通过理论结合仿真分析了双馈风力发电系统在不同幅值的电压跌落情况下的动态响应特性,分析结果表明,电压跌落幅度对风电机组的暂态特性有很大影响,不同幅度的电压跌落可以用不同的低电压穿越方案来实现不间断运行;最后,根据对风电机组故障特性的仿真分析提出了在不同情况下的低电压穿越方案:在小值电压跌落时,通过改进的磁链补偿控制策略以及网侧PWM变流器的statcom控制策略来实现故障穿越;在大值电压跌落期间,通过转子侧crowbar电路、直流斩波电路以及无功补偿等协同控制来实现双馈机组的故障穿越,重点研究了crowbar电路的投切时刻、旁路电阻阻值等因素对故障穿越的影响,最终提出了基于转子侧crowbar电路的低电压穿越优化控制方案。通过仿真分析,本文提出的低电压穿越方案能够有效提高风电机组的低电压穿越能力以及系统的暂态电压特性。
In the background of the global energy crisis and the vigorous supports to the new energy industry, wind power becomes a research focus in today's world. With the increase of the capacity of wind power generation system connected to the grid, the proportion of the wind power in power system is also growing, and the characteristics of the wind turbine while faults occur become more and more significant to the grid. When the external power grid transient voltage fluctuations, the wind turbines'ability to maintain connected to grid will be a vital role in the stability of the system. When the voltage sags caused by the grid's fault, if the wind turbines are off-grid by a large scale, it will bring secondary impacts to the weakly grid which is in fault or even voltage collapse and greater challenges to the safe and stable operation of power system. Therefore, it is very important to improve the uninterrupted operation of the wind turbine capacity when the grid's voltage sags.
     In this thesis we'll study the wind turbine's fault ride-through capability i with doubly-fed wind power generation system. At first, we gave a detailed analysis of the basic working principle of the doubly-fed wind power generation system, established a mathematical model of static ABC coordinate system and synchronous rotating d-q coordinate system, designed the back-to-back PWM converter control strategy and achieved and simulated in the PSCAD/EMTDC platform. Then we can establish Transient Mathematical Model of Doubly-fed wind turbine by Laplace transform based on steady-state mathematical model. Both in theory and simulation we analyze the dynamic response characteristics of a doubly-fed wind power generation system in the different amplitude of the voltage sags. The result indicates that voltage sags magnitude has a significant influence on the transient characteristics of the wind turbine, and appropriate low voltage ride through schemes can be used to achieve uninterrupted operation the appropriate in conditions of different ranges of voltage sags. At last, we derive low voltage ride through schemes in different situations according to the simulation analysis based on the fault characteristics of the wind turbine low voltage ride through schemes in different situations. When minor voltage sags occurs, we can achieve fault ride-through by improved flux compensation control strategy and statcom control strategy of grid-side PWM converter. When large voltage sags occurs, we can achieve fault ride-through of doubly-fed wind turbine by cooperative control among crowbar circuit of the rotor side, DC chopper and reactive power compensation. We mainly research the influence to low voltage ride through of crowbar switching time and bypass resistance and finally raise optimum low voltage ride through control scheme. And through simulation analysis, the scheme can increase low voltage ride through capacity of wind turbine and optimize transient voltage characteristics of the system.
引文
[1]安超.双馈式风力发电系统最大风能追踪和低电压穿越控制研究[D].:华北电力大学(北京),2009.
    [2]Morren J., Pierik J. T. G., De Haan S.W.H. Voltage dip ride-through control of direct-drive wind turbines, F,2004 [C]. IEEE.
    [3]Li W., Abbey C.. Joos G. Control and performance of wind turbine generators based on permanent magnet synchronous machines feeding a diode rectifier, F,2006 [C]. IEEE.
    [4]Mullane A., Lightbody G., Yacamini R. Wind-turbine fault ride through enhancement [J]. Power Systems, IEEE Transactions on,2005,20(4):1929-1937.
    [5]胡书举,李建林,许洪华等.永磁直驱风电系统低电压运行特性的分析[J].电力系统自动化,2007,31(17):73-77.
    [6]刘胜文,包广清,范少伟等.双PMW直驱同步风力发电的低电压穿越控制[J].大电机技术,2011,(4):15-18,22.
    [7]韩国庆.直驱式风力发电系统低电压穿越技术仿真研究[J].工矿自动化,2011,37(12):56-59.DOI:32-1627/TP.20111128.1612.016.
    [8]李建林,胡书举,孔德国等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.
    [9]Ekanayake J. B., Holdsworth L., Wu X.G, Jenkins N. Dynamic modeling of doubly fed induction generator wind turbines [J]. Power Systems, IEEE Transactions on,2003,18(2):803-809.
    [10]Petersson A., Hamefors L., Thiringer T. Evaluation of current control methods for wind turbines using doubly-fed induction machines [J]. Power Electronics, IEEE Transactions on,2005, 20(1):227-235.
    [11]Xiang D., Ran L., Tavner P. J., Yang S. Control of a doubly fed induction generator in a wind turbine during grid fault ride-through [J]. Energy Conversion, IEEE Transactions on,2006,21(3): 652-662.
    [12]郭晓明,贺益康,何奔腾.双馈异步风力发电机开关频率恒定的直接功率控制[J].电力系统自动化,2008,32(1):61-65.
    [13]Anaya Lara O., Hughes F. M., Jenkins N., Strbac G Rotor flux magnitude and angle control strategy for doubly fed induction generators [J]. Wind Energy.2006,9(5):479-495.
    [14]De Almeida R. G, Lopes J. A. P., Barreiros Jal, Improving power system dynamic behavior through doubly fed induction machines controlled by static converter using fuzzy control [J]. Power Systems, IEEE Transactions on,2004,19(4):1942-1950.
    [15]Rathi M. R., Mohan N. A novel robust low voltage and fault fide through for wind turbine application operating in weak grids, F,2005[C]. IEEE.
    [16]Gomis-Bellmunt 0., Junyent-Ferre A., Sumper A., Bergas-Jan J. Ride-through control of a doubly fed induction generator under unbalanced voltage sags [J]. Energy Conversion. IEEE Transactions on,2008,23(4):1036-1045.
    [17]Brekken T. K. A., Mohan N. Control of a doubly fed induction wind generator under unbalanced grid voltage conditions [J]. Energy Conversion, IEEE Transactions on,2007,22(1): 129-135.
    [18]Zhou Y, Bauer P., Ferreka J. A., Pierik J. Operation of grid-connected DFIG under unbalanced grid voltage condition [J]. Energy Conversion, IEEE Transactions on,2009,24(1):240-246.
    [19]贺益康,周鹏.变速恒频双馈异步风力发电系统低压穿越技术综述[J].2009,24(9):140-146.
    [20]胡书举,李建林,许洪华.变速恒频风电系统应对电网故障的保护电路分析[J].交流技术与电力牵引,2008,(1):45-50.
    [21]Sun T., Chen Z., Blaabjerg E Voltage recovery of grid-connected wind turbines with DFIG after a short-circuit fault, F,2004[C]. IEEE.
    [22]Rodriquez M., Abad G, Sarasola I., Gilabert A. Crowbar control algorithms for doubly fed induction generator during voltage dips, F,2005[C]. IEEE.
    [23]Seman S., Niiranen J., Arkkio A. Ride-through analysis of doubly fed induction wind-power generator under unsymmetrical network disturbance [J]. Power Systems, IEEE Transactions on, 2006,21(4):1782-1789.
    [24]Erlich I., Wrede H., Feltes C Dynamic behavior of DFIG-based wind turbines during grid faults, F,2008[C]. IEEE.
    [25]Abbey C., Joos G. Super capacitor energy storage for wind energy applications [J]. Industry Applications, IEEE Transactions on,2007,43(3):769-776.
    [26]肖成.双馈风力发电系统的建模与控制研究[D].河北工业大学,2010.
    [27]姚兴佳,刘君,邢作霞等.双馈变速恒频风电机组的功率特性[J].沈阳工业大学学报,2008,30(3):270-275.
    [28]张小兰.双馈风力发电机并网控制策略研究[D].重庆大学,2009.
    [29]王锋,姜建国.风力发电机用双PWM变换器的功率平衡联合控制策略研究[J].中国电机工程学报,2006,26(22):134-139.
    [30]马立新,郑益文,殷苗苗等.双馈风力发电转子侧控制技术的研究[J].微特电机,2011,39(12):50-53.
    [31]胡雪松,孙才新,李辉等.双馈风力发电机组转子侧控制策略改进[J].重庆大学学报, 2010,33(8):58-63.
    [32]苏正华.基于PSASP接口的双馈风电机组建模与系统仿真[D].河海大学,2008.
    [33]梁亮.双馈感应式风力发电系统低电压穿越能力研究[D].中国科学院电工研究所,2007.
    [34]马春明.双馈风力发电机并网低电压穿越技术的研究[D].上海交通大学,2012.
    [35]李艳平,吴为民,郭虎奎.无功补偿设备对风电机组暂态特性的影响[J].电机技术,2011,(2).
    [36]陈实,谢少军.大型并网风电机组动态无功补偿装置的研究[J].电气自动化,2005,(2).
    [37]李义岩,袁铁江,晁勤.基于PSCAD风电并网电力系统无功补偿策略研究[J].低压电器.2009,(19).
    [38]LI Yu,. GUAN Hongliang,. Etal. LVRT capability of wind turbine generator and its application to regional power grid [C].: Nov6-8,2006.
    [39]Morren J,. de Haan SWH,. Ride-through of wind turbines with doubly-fed induction generator during a voltage dip [J]. IEEE Transactions on Energy Conversion.2005.
    [40]靖言.永磁直驱型风电系统低电压穿越技术研究[D].:华北电力大学.2011.
    [41]胡家兵.双馈异步风力发电机系统电网故障穿越(不间断)运行研究[D].:浙江大学,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700