用户名: 密码: 验证码:
多谐波源相互影响的配电网滤波装置优化配置
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环境保护、节能减排和可持续发展的要求,越来越多的新能源接入电力系统。大量电力电子技术的应用,使电力网络中的谐波源从传统用电负载蔓延到供电电源,共同构成电网的多谐波源,向电力系统注入了大量的谐波。谐波电流在电网的公共连接点相互影响,产生抵消、衰减或叠加等现象,谐波频谱发生了变化。为了抑制谐波对电力系统造成的危害,在多谐波源相互影响的背景下,本文研究了多谐波源相互影响的滤波装置优化配置。
     本文通过MATLAB/simulink对不同频率、幅值和相位的谐波进行叠加仿真分析,得出谐波相互影响后谐波波形频谱的规律。并在对谐波状态估计后,找出不确定性谐波源发生的类型、位置和个数。对谐振现象产生的原理、谐振检测方法进行了分析,根据节点导纳矩阵特征值倒数得到的阻抗频谱曲线分析并联谐振,根据添加虚拟支路的回路阻抗分析串联谐振。
     本文对滤波装置的分类以及在工程应用上的优缺点做了简单的介绍,为了达到滤波装置安全经济有效地抑制谐波的目的,在分析滤波装置和系统参数的基础上建立了目标函数和约束条件的数学模型。寻优算法采用改进的粒子群算法,该算法根据粒子群算法参数速度v和惯性因子ω的关系,提出时变的非线性三角函数方法来控制参数,加速了算法的收敛速度,防止陷入局部最优。本文最后采用滤波效果最好、经济性最优和滤波效果和经济性都好的三个方案对滤波装置进行优化配置。同时在考虑不确定性谐波对滤波装置的影响以及是否与系统发生谐振的情况下,采用谐振检测的原理对滤波器参数和安装位置进行了校验。并通过MATLAB仿真验证了改进的粒子群算法优化配置滤波装置参数和位置的有效性。
With the requirements of environmental protection, energy conservation andsustainable development, more and more new energy power have had access to powersystems. The application of a large amount of power electronics technology makes theharmonic source of electricity network spread from the traditional load of electricityto the power supply, which constitutes the multi-harmonic sources of electricitynetwork and injects a large quantity of harmonics to the power system. Harmoniccurrents interact with each other at the point common coupling, resulting in thephenomenon of offset, attenuate or superimpose, and so on, and the properties ofharmonic spectrum change. In order to suppress the damages to the power systemcaused by the harmonics, this thesis studies the optimal allocation of the filter in thecontext of the interaction of harmonic sources.
     In this thesis, harmonics of different frequency, amplitude and phase areanalyzed through superimposing and emulating by using MATLAB/simulink, and thelaw of harmonic waveform spectrum after the interaction among harmonics isobtained. By estimating the states of harmonics, the type, location and the number ofthe uncertain harmonic sources are found. And the principle of resonance phenomenaand the resonance detection method are analyzed. The parallel resonance is analyzedaccording to the impedance spectrum curve made by inverse of the eigenvalue of thenodal admittance matrix, while the series resonance is based on adding virtual sliploop impedance.
     The classification of the filtering devices and their advantages and disadvantagesin engineering applications are introduced briefly in this thesis. In order to suppressharmonic safely, economically and effectively by filtering devices, the mathematicalmodel of the objective function and constraint condition are build on the basis of theanalysis of the filter devices and system parameters. The improved particle swarmoptimization (PSO) is adopted by the improved particle swarm optimization algorithm.According to the relationship of the parametric speed v and the inertia factorωofPSO, the method of time-variant nonlinear trigonometric function is proposed tocontrol the parameters as a result of accelerating the convergence speed andpreventing from falling into local optimum. Finally, three programs of the bestfiltering effect, the optimum economical outcome and both of the previous two are put forward to optimize the allocation of the filter. At the same time, considering theuncertain harmonics’impact on the filtering devices and that whether they willperform resonance with the system, the principle of resonance detection method isadopted to validate the filter parameters and locations. And the effectiveness ofparameters and location of the filter device configured by the improved particleswarm optimization algorithm is verified by MATLAB simulation.
引文
[1]刘琦.中国新能源发展研究.电网与清洁能源,2009,25(1):1-2
    [2]余贻鑫,栾文鹏.智能电网.电网与清洁能源,2009,25(1):7-11
    [3]李黎.分布式发电技术及其并网后的问题研究.电网与清洁能源,2010,26(2):55-59
    [4] Bhowmik A, Maitra A, Halpin S M, et al. Determina-tion of AllowablePenetration Levels of Distributed Generation Resources Based on HarmonicLimit Considerations. IEEE Transactions on Power Delivery, 2003, 8(2):619-624
    [5] McGranaghan M F. Quantifying reliability and service quality for distributionsystems. In: Rural Electric Power Conference IEEE. Albuquerque, NM, 2006,1-8
    [6]张国荣,张铁良,丁明,等.具有光伏并网发电功能的统一电能质量调节器仿真.中国电机工程学报,2007,27(7):82-86
    [7]涂春鸣,盘宏斌,唐杰,等.企业配电网电能质量补偿系统的设计及应用.电网技术,2008,32(9):10-14
    [8]翁利民,陈允平,舒立平.大型炼钢电弧炉对电网及自身的影响和抑制方案.电网技术,2004,28(2):64-67
    [9]徐永海,肖湘宁,杨以涵,等.小波变换在电能质量分析中的应用.电力系统自动化,1999,23(23):55-58
    [10]范瑞祥,孙旻,罗安,等.大容量整流负荷谐波和无功功率综合补偿装置设计.电网技术,2008,32(11):18-23
    [11]陈璇,邵志兰,徐勇.TCR型动态无功静止补偿装置用于电力拖动.高电压技术,2002,28(10):52-53
    [12]徐淑文,栾兆文.对电气化铁路所产生的谐波的研究.电力电容器,2007,28(3):40-44
    [13]于庆广.电力系统电能质量监测系统的实现.仪器仪表学报,2006,27(6):1482-1483
    [14]段晓波.解决高压电网谐波测量信号失真的新型测量系统与试验方法.电力设备,2005,6(6):37-39
    [15]邓礼宽,姜新建,朱东起,等.APF和SVC联合运行的稳定控制.电力系统自动化,2005,29(18):29-32
    [16] Dimeas A L, Hatziargyriou N D. Operation of a multi agent system for microgrid control. IEEE Trans on Power Systems, 2005, 20(3):1447-1455
    [17] Rivas D, Moran L, Dixon J W, et al. Improving passive filter compensationperformance with active techniques. IEEE Transaction on Industrial Electronics,2003, 50(1):161-169
    [18] Nikkhajoei H, Lasseter R H. Micro grid fault protection based on symmetrical.http://www.pserc.org/cgi-pserc/getbig/publicatio/2007public/microgridprotection-1.pdf.2006-12-01
    [19] Karsten Kahle, Tomas Larsson. The new 150MVA, 18kV static compensation atCERN: background, design and compensation. In: 17thInternational Conferenceon Electricity Distribution, Barcelona, 2003
    [20] Woo-Cheol Lee,Taeck-Kie Lee,Dong-Seok Hyun.A three-phase parallel activepower filter operating with PCC voltage compensation with consideration for anunbalanced load.IEEE Trans on Power Electronics,2002,17(5):807-814.
    [21]蕙锦,杨洪耕,叶茂清.多谐波源条件下的谐波污染责任划分研究.中国电机工程学报,2011,31(13):48-54
    [22]马历,刘开培,雷肖.配电网谐波源定位的支持向量机估计算法.中国电机工程学报,2008,28(10):111-116
    [23]张晶.多谐波源系统谐波叠加方法的研究.电网技术,1995,19(3):23-27
    [24]雍静,娄方桥,王一平.低压配电系统单相非线性负荷的谐波衰减效应研究.中国电机工程学报,2011,31(13):55-62
    [25] Ahmed E E, Xu W, Zhang G B. Analyzing systems with distributed harmonicsources including the attenuation and diversity effects. IEEE Trans. on PowerDelivery, 2005, 20(40):2602-2612
    [26] El-Saadany E F, Salama M M A. Effect of interactions between voltage andcurrent harmonics on the net harmonic current produced by single phasenon-linear loads. Electric Power Systems Research, 1997, 40(3):155-160
    [27] Grady W M, Mansoor A, Fuchs E F, et al. Estimating the net harmonic currentsproduced by selected distributed single-phase loads: computers, televisions, andincandescent light dimmers. In: IEEE Power Engineering Society WinterMeeting, New York: 2002:1090-1094
    [28] Cavallini A, Montanari G C, Cacciari M. Stochastic evaluation of harmonics atnetwork buses. IEEE Trans on Power Delivery,1995,10(3):1606-1613
    [29] Cavallini A, Montanari G C. A deterministic stochastic frame-work for powersystem harmonics modeling. IEEE Trans on Power System, 1997,12(1):407-419
    [30]陶骞.多谐波源系统谐波叠加算法的研究.湖北电力,2008,32(6):6-8
    [31]胡伟,査小明,孙建军.多谐波源网络谐波建模与谐波叠加仿真.中国电力,2006,39(3):61-65
    [32]余健明,李春莹.基于多谐波源动态运行的配电网滤波装置优化配置.电网技术,2005,29(6):22-26
    [33]赵勇,邓红英,李建华,等.基于机会约束规划的配电网络滤波装置优化配置.中国电机工程学报,2001,21(1):12-17
    [34]何娜,黄丽娜,武健,等.基于粒子群优化算法的混合有源滤波器中无源滤波器的多目标优化设计.中国电机工程学报,2008,28(27):63-69
    [35]杨文宇,刘健,余健明.改进的自适应遗传算法在配电网谐波抑制中的应用.继电器,2004,32(4):24-27
    [36]李习武,赵宏伟,李娜,等.基于人工免疫算法的配电网滤波器优化配置方法.电网技术,2010,34(5):104-108
    [37]林志清.基于网络固有结构法的多谐波源配电网滤波装置的分阶优化研究:[四川大学硕士学位论文].四川:四川大学,2006
    [38]马骞.供电质量的指标释义及标准. http:// www. chinarein. com/ ndlk/ ndqh/web/2004/docs/2004-05/2004-05-03.htm
    [39]粟时平,刘桂英.现代电能质量检测技术.北京:中国电力出版社,2008
    [40] Francisco C. De La Rosa.电力系统谐波.赵琰,孙秋野译.北京:机械工业出版社,2009
    [41]陈建民,周健,蔡霖.面向智能电网愿景的变电站二次技术需求分析.华东电力,2008,36(11):37-39
    [42]艾欣,雷之力,崔明勇.微电网谐波谐振的模态检测法研究.中国电机工程学报,2009,29(Supplement):55-60
    [43] Enslin J H R, Heskes P J M. Harmonic interaction between a large number ofdistributed power inverters and the distribution network. IEEE Transactions onPower Electronics, 2004, 19(6):1586-1593
    [44] Gobbeen J F G, Kling W L, Myrzik J M A. Power quality suspects of a futuremicro grid. In: International Conference on Future Power Systems, Amsterdam,Netherlands, 2005, 1-5
    [45]白华智.电力用户谐波发射水平评估:[华北电力大学硕士学位论文].北京:华北电力大学. 2006
    [46]陈小侠,刘杨,袁爱进.基于FFT的被控制对象频率特征估计.化工自动化及仪表,2009,36(3):19-23
    [47] HAUER J F. Application of Prony Analysis to the Determination of ModalContent and Equivalent Models for Measured Power System Response. In: IEEETransactions on Power Systems,1991,6(1):1062-1068
    [48]孙晓明,高孟平,刘涤尘,等.采用改进自适应Prony方法的电力故障信号的分析与处理.中国电机工程学报,2010,30(28):80-86
    [49]夏向阳.大功率注入式有源电力滤波器的理论研究及工程应用:[湖南大学博士学位论文].长沙:湖南大学,2009
    [50] Jos Arrillaga Neville R. Watson.电力系统谐波.林海雪,范明天,薛惠译.第二版.北京:中国电力出版社,2008
    [51]周辉,吴耀武,娄素华,等.基于模态分析和虚拟支路法的串联谐波谐振分析.中国电机工程学报,2007,27(28):84-89
    [52]贾莉.基于模态分析法的无源滤波器优化配置:[中国石油大学硕士学位论文].青岛:中国石油大学, 2010
    [53]帅智康,罗安,涂春鸣,等.并联混合型有源电力滤波器的最优安装点.中国电机工程学报,2008,28(27):48-55
    [54] Moran L T, Mahomar J, Dixon J R. Careful corulection. IEEE IndustryApplications Magazine, 2004, 10(2):43-50
    [55] H. Akagi. New trends in active filters for power conditioning, IEEE Trans onIA,1996,32(6):1312-1321
    [56] H. Fujita,H. Akagi. A practical approach to harmonic compensation in powersystems-series connection of passive and active filters, IEEE Trans on IA, 1990,27(6):587-593
    [57]王跃.并联混合型有源电力滤波器及其应用研究:[西安交通大学硕士学位论文].西安:西安交通大学,2003
    [58]王莉娜.厂矿企业配电网谐波治理控制策略和工程应用研究:[中南大学硕士学位论文].长沙:中南大学,2003
    [59]付青.大功率电网谐波有源治理的控制策略和工程应用研究:[中南大学硕士学位论文].长沙:中南大学,2004
    [60]吴竞昌.供电系统谐波.北京:中国电力出版社,2006
    [61] George J. Wakileh.电力系统谐波-基本原理、分析方法和滤波器设计.徐政译.北京:机械工业出版社,2003
    [62] Kennedy J, Eberhart R. Particle swarm optimization. In: Proceedings of IEEEInternational Conference on Neural Networks, Perth, Australia, 1995:1942-1948
    [63]赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法.中国电机工程学报,2005,25(5):1-7
    [64]刘自发,张建华.基于改进多组织粒子群体优化算法的配电网络变电站选址定容.中国电机工程学报,2007,27(1):105-111
    [65]夏家和,秦永元,贾继超.粒子群优化算法在传递对准中的应用.中国惯性技术学报,2009,17(5):513-516
    [66]黄石柱,李建华,赵娟,等.电气化铁路牵引变电所概率谐波电流的仿真计算.电力系统自动化,2002,5(10):26-31

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700