用户名: 密码: 验证码:
基于FLAC3D的瑞利波频散特性数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
瑞利波频散特性是瑞利波勘察法的理论基础。介质中的倾斜分界面对瑞利波的传播有着重要影响。研究包含倾斜分界面介质中的瑞利波频散特性,可以拓展瑞利波法在此类复杂介质中的应用,对丰富瑞利波传播理论和场地勘察手段有着重要的理论意义和应用价值。
     本文利用FLAC3D建立了双层介质动力模型,数值模拟了稳态瑞利波方法的激振、数据采集和分析过程,提取了瑞利波频散曲线,重点研究了包含倾斜分界面的介质中瑞利波频散特性。完成的主要工作和取得的成果如下:
     1、利用FLAC3D建立了水平双层层状介质动力模型,对稳态瑞利波法进行了模拟。结果表明,采用互相关法提取的频散曲线与理论计算值非常接近;且间距相同、不同位置观测点对提取的频散曲线没有明显差别,验证了水平成层介质中瑞利波频散曲线与观测点的位置无关这一基本特征。说明了利用FLAC3D进行稳态瑞利波法数值模拟可行,精度满足要求。
     2、建立了5%、10%和15%的3个不同倾斜坡度分界面的双层层状介质动力模型。通过上坡向稳态激振,下坡向记录,每个模型提取了23对观测点对应的瑞利波频散曲线,研究了包含倾斜分界面介质中的瑞利波频散曲线特性。
     3、研究表明,倾斜分界面对瑞利波的频散特性有着重要影响,测试的频散曲线与两观测点中间位置、浅端观测点和深端观测点对应剖面的理论计算值均有很大差别,偏离程度远大于两观测点土层厚度差别引起的扰动,并且随着坡度的增大而增大。
     4、分析指出,位于倾斜分界面不同位置处,即使间距相等的观测点,提取的频散曲线也不同;在包含倾斜分界面的介质中,稳态瑞利波法提取的频散曲线还与观测点相对倾斜分界面的位置有关。
     5、探讨了通过修正观测分析结果,来获得倾斜分界面介质中观测点下平均速度结构的途径。最后,提出了进一步研究展望。
Dispersion characteristic is the theoretical basis of Rayleigh wavedetection method. The presence of dipping layer has significant influence onthe Rayleigh wave propagation. Researches on the dispersion characteristic onsites with dipping layer can expand the application of the Rayleigh wavemethod to those complex sites, and have important theoretical significanceand application value on the propagation theory and reconnaissance means ofRayleigh wave.
     In this paper, FLAC3D is used to set up dynamic models of double layer,the data acquisition and analysis process of Steady-state Rayleigh method aresimulated, and dispersion curves of Rayleigh wave are extracted. Studies arefocused on the dispersion characteristic of Rayleigh wave in the medium withdipping layer. The main results and accomplishments are as follows:
     1. Flat double-layer models are setup and the steady-state Rayleigh wavetest is simulated by FLAC3D. The dispersion curves obtained by crosscorrelation method are close to the theoretical value, and there is nosignificant difference between the dispersion curves observed at differentlocation but with same span, which verifies that the Rayleigh dispersioncurves in flat-layered medium are irrelevant to the observation location. So itis applicable and accurate enough to simulate steady-state Rayleigh wave testby FLAC3D.
     2. Three double-layered models with different dipping slopes of5%,10%and15%are setup. The test and analysis of steady-state Rayleigh wavemethod excited at uphill and recorded at downhill are simulated. Dispersioncurves corresponding to23pairs of observation locations are extracted, andthe dispersion characteristic of Rayleigh wave is studied.
     3. Study on the models with dipping layer shows that the presence ofdipping layer has significant influence on the Rayleigh wave dispersioncharacteristic, the observed dispersion curves are different from the theoreticalones in centre position, shallow observation point or deep observation point.The deviations are much bigger than those caused only by the difference ofthe thickness below the two observation stations, and the deviations increasewith the increase of dipping slpoes.
     4. Analysis also shows that even with the same observation spacing,dispersion curves also alternated at different locations relative to the dippinglayer, indicating that the extracted dispersion curves of Rayleigh wave arerelevant to observation locations.
     5. It is discussed that the way to obtain the average velocity of dippinglayer sites under observation stations by correcting the results of the observation and analysis. Finally, further researches are also suggested.
引文
[1]曹小林,洪学海,曹俊兴.面波波形反演中的模拟退火法[J].成都理工学院学报,2000.27(3):296-301.
    [2]陈育民,刘汉龙.邓肯-张本构模型在FLAC3D中的开发与实现[J].岩土力学,2007,28(10):2123-2126.
    [3]陈育民,徐鼎平.FLAC/FLAC3D基础与工程实例[M].北京:中国水利水电出版社,2008.
    [4]陈云敏,吴世明.成层地基的Rayleigh波特征方程的解法[J].浙江大学学报,1991,25(1):40-52.
    [5]褚卫江,徐卫亚,杨圣奇.基于FLAC3D岩石黏弹塑性流变模型的二次开发研究[J].岩土力学,2006,27(11):2005-2010.
    [6]崔建文.一种改进的全局优化算法及其在面波频散曲线反演中的应用[J].地球物理学报,2004,47(3):521-527.
    [7]邓红卫,朱和玲,周科平.基于FLAC3D数值模拟的前后处理优化研究[J].矿业研究与开发,2008,28(2):60-62.
    [8]邓乐翔.瑞雷波场正演模拟及频散曲线的提取[D].西安:长安大学,2010.
    [9]丁秀美,黄润秋,刘光士.FLAC3D前处理程序开发及其工程应用[J].地质灾害与环境保护,2004,15(2):68-73.
    [10]凡友华,刘家琦,肖柏勋.计算瑞利波频散曲线的快速矢量传递算法[J].湖南大学学报,2002,29(5):25-30.
    [11]凡友华,考虑高阶模的Rayleigh波勘探应用研究[R].北京:北京大学,2003.
    [12]丰赟.基于FCT有限差分方法的瑞雷波数值模拟[D].长沙:中南大学,2010.
    [13]郭君.地下洞穴的瑞利面波波场特征有限元数值模拟研究[D].成都:西南交通大学,2008.
    [14]何华.频散曲线拟合瑞雷波勘探方法及其实现[D].武汉:中国地质大学,2001.
    [15]胡斌,张倬元,黄润秋.FLAC3D前处理程序的开发及仿真效果检验[J].岩石力学与工程学报,2002,21(9):1387-1391.
    [16]胡军,朱巨建.应变软化模型在FLAC3D二次开发中的应用[J].水电能源科学,2009,27(3):120-123.
    [17]黄振平,杨学山.瑞利波频谱分析法的研究[J].世界地震工程,1997,13(3):46-54.
    [18]贾学明,杨建国,赖思静.路基边界对瑞利波检测影响的数值模拟研究[J].岩土力学,2004,25(z2):256-259.
    [19]赖思静,贾学明,杨建国.软弱地层中瑞雷波传播的数值模拟研究[J].公路交通技术,2005(5):57-62.
    [20]蓝航,姚建国,张华兴.基于FLAC3D的节理岩体采动损伤本构模型的开发及应用[J].岩石力学与工程学报,2008,27(3):572-579.
    [21]李洪勇.基于FLAC3D的龙江特大桥边坡稳定性分析[J].武汉理工大学学报,2010(3):61-64.
    [22]刘波,韩彦辉.FLAC原理、实例与应用指南[M].北京:人民交通出版社,2005.
    [23]刘春玲,祁生文,童立强.利用FLAC3D分析某边坡地震稳定性[J].岩石力学与工程学报,2004,23(16):2730-2733.
    [24]刘姗姗,赵同彬.粘弹性广义Kelvin模型的FLAC3D二次开发[J].山东科技大学学报,2010,29(4):20-23.
    [25]毛承英.基于改进遗传算法的瑞雷波频散曲线反演[D].长沙:中南大学,2010.
    [26]孟厦.FLAC3D前处理程序开发及其工程应用研究[D].淮南:安徽理工大学,2009.
    [27]牛滨华,何继善.半空间垂向非均匀复杂介质面波频散方程[J].物探与化探,1996,20(5),335-344.
    [28]裴江云,吴永刚,刘英杰.近地表低速带反演[J].长春地质学院学报,1994,24(3):317-320,326.
    [29]彭文斌.FLAC3D实用教程[M].北京:机械工业出版社,2008.
    [30]秦臻,张才,郑晓东.高精度有限差分瑞雷面波模拟及频散特征提取[J].石油地球物理勘探,2010,45(1):40-46.
    [31]任青文.表面波谱分析方法及其在工程中的应用[J].河海科技进展,1994,14(2):7-14.
    [32]师黎静,陶夏新,赵纪生.一种波速结构的两步优化反演策略[J].地球物理学报,2009,52(8):2105-2112.
    [33]石耀霖,金文.面波频散反演地球内部构造的遗传算法[J].地球物理学报,1995,38(2):189-198.
    [34]苏军,王文哲,杨小聪.应用FLAC3D研究地下开采对围岩的影响范围[J].有色金属,2009(4):161-165.
    [35]陶夏新,师黎静.利用地脉动台阵观测推断场地速度结构的虚拟反演[C].北京:地震出版社,2002:443-452.
    [36]王国波,尹骥,杨林德.Davidenkov模型在FLAC3D中的开发及验证[J].武汉理工大学学报,2008,30(8):143-146.
    [37]王宏辉,张仙义.基于FLAC3D的圆形隧道应力位移的数值模拟与分析[J].工程建设与设计,2008(2):73-78.
    [38]王士恩,刘超常,郭伯强.用瑞利波检验高喷防渗墙的施工质量及地层分布特征[J].工程勘察,1998(6):62-64.
    [39]王祖强.基于FLAC3D的混凝土面板堆石坝应力和变形分析[D].长沙:长沙理工大学,2009.
    [40]肖柏勋,刘明贵.一种新型的工程岩体探测震源—超磁致伸缩声波发射器[J].地学前缘,1996,3(2):198-202.
    [41]熊章强,唐圣松,张大洲.瑞利面波数值模拟中的PML吸收边界条件[J].物探与化探,2009,33(4):453-457.
    [42]熊章强,张大洲,秦臻.瑞雷波数值模拟中的边界条件及模拟实例分析[J].中南大学学报(自然科学版),2008,39(4):824-830.
    [43]徐平,李云鹏,丁秀丽.FLAC3D粘弹性模型的二次开发及其应用[J].长江科学院院报,2004.21(2):10-13.
    [44]闫长斌,徐国元,李夕兵.爆破震动对采空区稳定性影响的FLAC3D分析[J].岩石力学与工程学报,2005,24(16):2894-2899.
    [45]阎頔.瑞利面波频散曲线改进的退火遗传反演算法研究[D].桂林:桂林理工大学,2011.
    [46]杨成林.瑞利波勘探[M].北京:地质出版社,1993.
    [47]张大洲,熊章强,顾汉明.高精度瑞雷波有限差分数值模拟及波场分析[J].地球物理学进展,2009,24(4):1313-1319.
    [48]张碧星,喻明,熊伟.层状介质中的声波场及面波研究[J].声学学报,1997,22(3):230-241.
    [49]张慧昕,陈晓桥,王艳芬.FLAC3D在超长桩群桩效应分析中的应用[J].世界桥梁,2009(3):26-28,42.
    [50]张宇旭.路基施工过程变形研究的FLAC3D数值模拟[J].武汉工程大学学报,2011,33(6):72-75.
    [51]张忠苗,魏玉伦,陈云敏.瞬态面波测试技术在地基处理评价中的应用[J].物探与化探,1992,16(1):48-54.
    [52]赵明.瑞利波法在工程勘察中的应用[J].勘察科学技术,1996(5):54-57.
    [53]周竹生,刘喜亮,熊孝雨.弹性介质中瑞雷面波有限差分法正演模拟[J].地球物理学报,2007,50(2):567-573.
    [54]左双英,肖明,陈俊涛.基于Zienkiewicz-Pande屈服准则的弹塑性本构模型在FLAC3D中的二次开发及应用[J].岩土力学,2011,32(11):3515-3520.
    [55] A.Abo-Zena.Dispersion function computations for unlimited frequency values[J].Geophys.J.R.Astr.Soc,1979,58(1):91-105.
    [56] Asten,M.W.Resolving a velocity inversion at the geotechnical scale using themicrotremor(passive seismic)survey method[J].Exploration Geophysics,2004(35):14-18.
    [57] A.V.Clark,P.Fuchs,S.R.Schaps.Fatigue load monitoring in steel bridges with Rayleigh waves[J].Journal of Nondestructive Evaluation,1995,14(3):83-97.
    [58] Bhattacharya S.N.Extended formulation for Rayleigh wave computation at highfrequencies in spherical layered earth[J].Geophys.J.R.Astr.Soc,1986,84(2):311-329.
    [59] Bixing Zhang.,M.Yu.,C.Q.Lan.Elastic wave and excitation mechanism of surface waves in multilayered media[J].J.Acoust.Soc.Am,1996,l00(6):3527-3538.
    [60] Bohlen.Thomas,Saenger.Erik.H.Accuracy of heterogeneous staggered-grid finite-difference modeling of Rayleigh waves[J].Geophysics,2006,71(4):109-115.
    [61] Chang.F.K,Ballard.R.F.Rayleigh wave dispersion technique for rapid subsurfaceexploration[A].第42届国际地球物理年会,1973.
    [62] Chen X F.A systematic and efficient method of computing normal modes formultilayered half-space[J].Geophysical.J.Int,1993,115(2):391-409.
    [63] E.C.Pestel,F.A.Leckie.Matrix methods in Elasto-Mechanics[M].New York:McGraw-Hill,1963.
    [64] F.Schwab.Surface-wave dispersion computations:Knopoff's method[J].Bull.Seism.Soc.Am,1970,60(5):1491-l520.
    [65] Gabriels.P,Snieder.R,Nolet,G.In situ measurement of shear wave velocity in sediments with higher-mode Rayleigh waves[J].Geophys.Prosp,1987,35(2):187-196.
    [66] Mal A.K.Guided waves in layered solids with interface zones[J].Int.Eng,1988,26(8):873-881.
    [67] N.A.Haskell.The dispersion of surface waves on multilayered media[J].Bull.Siesm.Soc.Am,1953,43(11):17-34.
    [68] Richards P.G,Witte D.C,Ekstrom G.Generalized ray theory for seismic wavesin structures with planar nonparallel interfaces[J].Bull.Seism.Soc.Am,1991,81(4):1309-133l.
    [69] S.Nazarian,Stokoe.II K H.In situ determination of elastic moduli of pavementsystems by spectral-of-surface-waves method.Research Report437-2,Austin,Centerfor Transportation.Research,The University of Texas,1986.
    [70] Stokoe.II K H,S.Nazarian.Effectiveness of ground improvement from spectralanalysis of surface waves[A].In:Proc.8th Euro Conf On Soil Mech and FoundEng,1983.
    [71] Taylor.S.R,H.J.Patton.Shear-Velocity structure form reginalized surface-wave dispersion in the basin range[J].Geophys.Res.Lett,1986,13(1):30-33.
    [72] Thrower E N.The Computation of the dispersion of elastic waves in LayeredMedia[J].Sound and Vib,1965,2(3):210-226.
    [73] Willialm Menke.Comment on‘Dispersion function computations for unlimited frequency values’by Anas Abo-Zena[J].Geophys.J.R.Astr.Soc,1979,59(2):315-323.
    [74] Xia J H,Miller R D,Park C B.Estimation of near-surface shear-wave velocityby inversion of Rayleigh waves[J].Geophysics,1999,64(3),691-700.
    [75] Xu Yixian,Xia Jianghai,Miller R D.Numerical investigation of implementationof air-earth boundary by acoustic-elastic boundary approach[J].Geophyscis,2007,72(5):147-153.
    [76] Yamanaka H,Ishida H.Application of genetic algorithms to an inversion of surface wave dispersion data[J].Bull.Seism.Soc.Am,1996,86(2):436-444.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700