用户名: 密码: 验证码:
裂隙岩体热—水—力三场耦合米级尺度模型试验及数值模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文在总结国内外现有研究成果的基础上,依托国家国防科工局高放废物地质处置项目,针对高放废物地下处置库近场裂隙岩体中的热—水—力三场(THM)耦合问题,通过采用室内米级尺度模型试验和数值模拟方法进行研究,主要工作和取得的研究成果如下:
     (1)以我国首个高放废物拟建地下处置库工程为背景,在理论分析和项目组已有研究成果的基础上,制定了室内米级尺度的裂隙岩体热—水—力三场耦合模型实验方案,并制作了一套能够模拟裂隙岩体三场耦合作用的实验装置,具体包括实验方案制定,测试元器件选择,试验模型设计、制作和调试等。该实验装置包含采集于甘肃北山的32块200×250×300mm的花岗岩试块构成的裂隙岩体模型。试验的边界条件为左侧边界加热、右侧边界受力、垂直向渗流以及四周隔热。
     (2)利用实验装置进行室内米级尺度裂隙岩体热—水—力三场耦合的模型试验。第一步先进行渗流场的单场试验,第二步进行热—水两场耦合试验,最后第三步进行热—水—力三场耦合试验。试验分析了其中温度场、渗流场和应力场的变化规律以及他们之间的相互影响作用,重点研究裂隙岩体受力对渗流场和温度场的影响。
     (3)根据室内试验的结果,采用与模型试验相应的初始边界条件,利用有限差分数值分析软件FLAC对模型试验进行数值模拟,研究在数值模拟中裂隙岩体三场耦合效应的体现,观察裂隙岩体受力对其他两场的影响在数值模拟中的表现。
     (4)将结果与模型试验的结果进行对比。对比结果表明两者较为吻合,但也存在一定的差异性,具体表现在力对热—水耦合的影响上,模型试验表现不如数值模拟明显。在此基础上研究近场裂隙岩体特征对高放废物深地质处置的影响。
This paper based on the background of the research status for the deep geological disposal project of high level radioactive waste (HLW), research its thermal-hydrological-mechanical (THM) multi-field coupling by indoor meter scale model test and numerical simulation. The major contents and research achievements are as follow:
     (1) In the background of the China's first proposed high-level radioactive waste underground repository project, under the guidance of the theory and existing research, develop thermal-hydrological-mechanical multi-field coupling model test program and the corresponding test preparatory work, Including program development、test components、test modeling and debugging. Use32granite test block that collected in Gansu South Mountain to constitute a model of the fractured rock mass. Conduct thermal-hydrological-mechanical (THM) multi-field coupling model test under the conditions of heat on the right side, force on the left side, vertical seepage and surrounding insulation
     (2) Use the experimental device to test thermal-hydrological-mechanical coupling in fractured rocks. First step, conduct a single field tests of the hydrological field. Second, conduct thermal-hydrological field coupling model test. Last, conduct the thermal-hydrological-mechanical (THM) multi-field coupling model test. An analysis of the variation of three fields and their mutual influence, focus on the impact that mechanic field on thermal and hydrological field.
     (3) According to the results of model test, use finite difference numerical analysis software FLAC to simulate the model test. On this basis, study three coupling effect of fractured rock mass in numerical simulation. Observe the impact that mechanic field on thermal and hydrological field in numerical simulation.
     (4) Compare the results of numerical simulation and model test, shows that they coincide a lot, but also have some differences, specifically manifested in the impact that mechanic field on thermal and hydrological field. This phenomenon is more obvious in numerical simulation than in the model test. On this basis, study the near-field fractured rock mass characteristics of high level radioactive waste deep geological storage.
引文
[1]Hudson JA, Stephansson O, Andersson, J. Guidance on numerical modeling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories. Int J Rock Mech Min Sci.2005.42:850-870.
    [2]Tsang CF, Jing L, Stephansson O, Kautsky F. The DECOVALEX III project: A summary of activities and lessons learned. Int J Rock Mech Min Sci.2005.42:593-610.
    [3]卢德唐、曾亿山、孔祥言.热流固耦合渗流与核废料贮存库.国防科工委首届高放废物地质处置研讨会论文集.2005年.北京.111-118.
    [4]刘泉声、刘小燕等.核废料贮存裂隙岩体THM耦合研究进展与展望.国防科工委首届高放废物地质处置研讨会论文集.2005年.北京.76-88.
    [5]刘善利、赵坚、盛金昌.环境工程中多场耦合作用研究综述.中国岩石力学与工程学会废物地下处置专业委员会成立大会暨首届学术交流大会论文集.北京.2006年.111-116.
    [6]崔玉军、陈宝.高放核废物地质处置中工程屏障研究新进展.岩石力学与工程学报.2006年.25(4):842-847.
    [7]张玉卓、张金才.裂隙岩体渗流与应力藕合的试验研究[J].岩土力学.1997.18(4):59-62
    [8]沈洪俊、高海鹰、夏颂佑.应力作用下裂隙岩体渗流特性的试验研究[J].长江科学院院报.1998.15(3):35-39
    [9]贺玉龙、杨立中、涂国强.温度和有效应力对砂岩孔隙度的影响[J].辽宁工程技术大学学报.2004.23(3):302-305
    [10]路威、项彦勇、唐超.填砂裂隙岩体渗流传热模型试验与数值模拟.岩士力学2011.32(11)3448-3454.
    [11]朱以文、蔡元奇.用ABAQUS分析工程中的多场耦合问题.武汉大学土木建筑工程学院武汉.2003.430072.
    [12]盛金昌.多孔介质流—固—热三场全耦合数学模型及数值模拟.2006.岩石力学与工程学报.210098.
    [13]Bo Li, Yujing Jiangb, Tomofumi Koyamad, Lanru Jingd, Yoshihiko Tanabashi. Experimental study of the hydro-mechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures[J]. International Journal of Rock Mechanics & Mining Sciences.2008.45:362-375.
    [14]Jeffery J. Roberts. Electrical properties of micro porous rock as a function of saturation and temperature[J]. JOURNAL OF APPLIED PHYSICS.2002.91(3):1687-1694
    [15]周志芳、王锦国.裂隙介质水动力学.中国水利水电出版社[M].2004:27-29.
    [16]张有天.岩石水力学与工程.中国水利水电出版社[M].2005.
    [17]薛禹群、朱学愚.地下水动力学.地质出版社[M].1979.
    [18]陈崇希、林敏.地下水动力学.中国地质大学出版社[M].1999.
    [19]Kozeny J. uber kapillare Leitung des Wassers im Boden[J]. Akad.Wiss. Wien.1927.136: 271-306.
    [20]Carman P C. The determination of the specific surface of powders I.Transactions[J]. Journal of the Society of Chemical Industries.1938.57:225-234.
    [21]Carman P C. Flow of gases through porous media[J]. Butterworths Scientific Publications. 1956:182.
    [22]Taylor D W. Fundamentals of soil mechanics[M]. New York:John Wiley and Sons Inc. 1948:700.
    [23]Leroueil S, Bouclin G, Tavenas F, et al. Permeability anisotropy of natural clays as a function of strain[J]. Canadian Geotechnical Journal.1990(a)..27(5):568-579.
    [24]Leroueil S, Magnan J P, Tavenas F. Embankments on soft clays[M].England:Ellis Horwood Ltd..1990(b):360.
    [25]Tavenas F, Jean P, Leblond J, et al. The permeability of of natural soft clays Part Ⅱ:permeability characteristics[J]. Canadian Geotechnical Journal.1983.20.645-660.
    [26]邓永锋、刘松玉、章定文、徐海波.几种孔隙比与渗透系数关系的对比.西北地震学报.2011:064-03
    [27]Ana-Maria-Bianchi,Yves Fautrelle,Jacqueline Etay.王晓东(译).传热学.大连理工大学出版社.2008.6.
    [28]陈景仁.流体力学及传热学.北京:国防工业出版社[M].1984.
    [29]项彦勇.裂隙岩体中非饱和渗流与运移的概念模型及数值模拟.工程地质学报.2002.10(2).204-209.
    [30]项彦勇.模拟裂隙多孔介质中变饱和渗流的广义等效连续体方法.岩土力学.2005.26(5):750-754.
    [31]项彦勇、姬永红.变饱和裂隙多孔介质的双渗透率数值模型与参数分析.土木工程学报.2005.38(6):77-82.
    [32]李涛.德国放射性废物地质处置的研究历程和经验.《国防科工委高放废物地质处置研讨会论文集》.2005年8月.北京.26-31.
    [33]李涛、张志红.底泥堆场工程地质调查与评价及污染物扩散与阻隔研究.国家十五重大专项—“太湖水污染控制与水体修复技术及工程示范”项目子课题“重污染水体底泥环保疏浚与生态重建技术”中“污染底泥堆场技术研究”专题研究的结题报告.2005年10月.
    [34]李涛、项彦勇.高放废物地下处置库近场热-水-力模拟耦合及工程评价.国防科学技术工业委员会.2008
    [35]Chan T,Khair K,Jing L,Ahola M,Noorishad J,Vuillod E.International Comparison of Coupled Thermo-Hydro-Mechanical Models of a Multiple-Fracture Bench Mark Probem:DECOVALEX Phase I.Bench Mark Test 2.Int.J.Rock Mech. Min. Sci.& Geomech.Abstr. Vol.32.No.5. pp.435-452. 1995.
    [36]刘波、韩彦辉FLAC原理.实例与应用指南.人民交通出版社[M].2005:106-110
    [37]Itasca Consulting Group. Inc. FLAC(Fast Lagrangian Analysis of Continua) User Manuals.Version 5.0.Minneapolis.Minnesota.2005.5.
    [38]Itasca Consulting Group. Inc. FLAC 3D(Fast Lagrangian Analysis of Continua) User Manuals.Version 2.1.Minneapolis.Minnesota.2002.6.
    [39]党旭光、朱庆杰、刘峰,程雨.热-流-固耦合建模过程[J].岩士力学.2009(S2).
    [40]朱志武、宁建国、马巍.基于损伤的冻土本构模型及水、热、力三场耦合数值模拟研究[J].中国科学:物理学力学天文学.2010(06).
    [41]张强林、王媛、曹国利.等效裂隙岩体THM耦合并行有限元程序开发[J].长江科学院院报.2009(10).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700