用户名: 密码: 验证码:
河套断陷带北缘主要活动断裂带地震危险性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
活动断裂的地震危险性研究已经由传统的定性分析发展到以概率性分析为主要手段的定量化研究。其中,实时概率模型方法是一种建立在地震原地复发理论和概率论基础之上,以地质学研究成果和大地形变测量资料为参数依据的中长期地震危险性定量分析方法。活动断裂概率性地震危险性研究主要包括三方面内容:地震复发模式、地震复发间隔和概率模型。
     河套断陷带位于鄂尔多斯块体北缘,断陷带北部边界均为晚更新世以来强烈活动的活断层,包括狼山山前断裂、色尔腾山山前断裂、乌拉山山前断裂和大青山山前断裂。
     近十年来以GPS为代表的大地形变监测新技术发展迅速,目前已经积累了关于中国大陆的相对完善的GPS观测数据。本文以“中国地壳运动观测网络”观测的运动速率场为基础,通过插值计算获得河套断陷带均匀网格化的GPS运动速率场。随后将GPS速率转化为应变率场,引入Savage利用Kostrov地震矩率累积释放公式所推导的最优地震矩率转换公式,将应变率转化为地震矩率,最后利用地震矩率法求得各断裂带的平均地震复发间隔。
     本文以河套及邻区83个古地震及历史地震样本,借鉴NB建模思想对复发间隔进行均一化,并利用最大似然法求得均一化的样本所服从的对数正态分布模型的参数,其中均值μ=-0.02254,标准差σ=0.2216。在概率模型的选取上,除对数正态模型外,本文还考虑了泊松模型和布朗时间过程模型,其中布朗时间过程模型的变异系数α取0.5。
     特征地震描述了地震原地复发行为,而其震级、即特征震级则决定地震的复发间隔。由于研究区没有发生7级以上震级的明确纪录以及破裂长度-震级经验关系具有不确定性,在特征震级的选取上本文综合考虑7级、7.5级和8级的震级并分别计算地震危险性。将求得不同震级地震的复发间隔和离逝时间参数代入预设的三个概率模型之中,利用计算机软件分别计算未来30年、50年、100年的地震复发条件概率值,并以此为依据对各断裂带的地震危险性做出评价:
     ①狼山山前断裂地震危险性比较高,百年内发生7级地震的可能性较大,发生7.5级及以上大震的可能性则相对较低。②色尔腾山山前断裂百年内发生7级地震的可能性不能判断;发生7.5级地震的可能性则较大,并且不能排除发生8级地震的可能性。③乌拉山山前断裂未来百年发生7级及以上地震的可能性较大,而发生8级及以上地震的可能性很小。④大青山山前断裂百年内发生7.级地震的可能性相比其它断裂要高很多,同时也具备发生7.5级地震的可能性,而该断裂发生8级地震的可能性则较很小。
Research on seismic hazard evaluation of active faults has evolved fromtraditional qualitative analysis to quantitative evaluation on the basis of probability.Real-time model method is a mid-long term seismic hazard evaluation which isderived from theory of characteristic earthquake and probability, and built ongeological research findings and observations of crustal deformation. The research onseismic hazard evaluation of active faults is consisted by three parts: earthquakerecurrence model, earthquake interval, and density distribution of earthquake events.
     The Hetao fault-depression zone is on the north boundary of Ordos block, ofwhich the north margin is consisted of four strong active faults since Late Pleistocene:Langshan piedmont fault, Se’ertengshan piedmont fault, Wulashan piedmont fault andDaqingshan piedmont fault.
     In the past decade, a new technology of crustal deformation observation calledGPS, short for Global Positioning System, has been rapidly developed, and adequateGPS data have been accumulated. On the basis of horizontal velocity data fromproject Crustal Movement Observation Network of China, a well-distributed grid ofGPS velocity on the Hetao fault-depression zone has been constructed by Kriginginterpolation. Then the GPS velocity rate is changed into strain rate, which is finallytransformed into seismic moment rate by the best formula proposed by Savageconverted form Kostrov’s moment rate calculation formula. The average earthquakerecurrence intervals of active faults are calculated with the moment rate.
     83samples of paleoearthquakes and historical earthquakes are collected in theHetao fault-depression zone and its neighboring area, and then constructed intoearthquake recurrence distribution. By the method of maximum likelihood estimation,the parameters of the lognormal distribution are determined, which are: μ=-0.02254,σ=0.2216. Besides the lognormal distribution, Poisson distribution model and BPTmodel, short for Brownian Passage Time model, are also considered in the paper. Thecoefficient of variation of BPT model is set as0.5.
     The event recurrence interval of each fault is determined by the characteristicmagnitude of that fault. Due to its lacking of historical record about earthquakes overmagnitude7and the uncertainty of empirical rupture-magnitude relationship,magnitude7,7.5, and8are all considered as characteristic magnitudes of each fault,and seismic hazard of each fault is evaluated separately according to the threemagnitudes and the recurrence intervals determined by them. In the end, recurrenceinterval and elapse time related to each characteristic magnitude are substituted intothe three selected probability-distribution models. The probabilities of occurrence ofstrong earthquake in the future30,50and100years are calculated, based on whichthe seismic hazard evaluation are made:
     ①The seismic hazard of Langshan piedmont fault is relatively high. Within thenext100years, earthquakes of magnitude7are likely to strike, while the occurrenceof strong earthquakes of magnitude7.5and above is with relatively low possibility.②The possibility of an earthquake occurring in the next century of Se’ertengshanpiedmont fault cannot be judged; the possibility of a Ms7.5earthquake is relativelyhigh, and the likelihood of a Ms8earthquake cannot be completely excluded.③Thelikelihood of a earthquake of magnitude7and above occurring in Wulashan piedmontfault in the next100years is relatively high, while a earthquake of magnitude8isunlikely to happen.④Daqingshan piedmont fault is with high probability of strikingof a Ms7earthquake in the next century. An earthquake of magnitude7.5is likely tooccur, while an earthquake of magnitude8is also unlikely to happen.
引文
Ellsworth W L, Matthews M V, Nadeau R M, et al. A physically based earthquake recurrence modelfor estimation of long~term earthquake probabilities, U.S. Geol. Surv. Open~File Rept,1999:99~522
    Geller R J, Jackson D D, Kagan Y Y, et al. Earthquakes Cannot Be Predicted[J]. Science,1997,275(5306):1616
    Hanks T C, Kanamori H. A moment magnitude scale[J]. J. Geophys. Res.,1979,84:2348~2350
    Hagiwara Y. Probability of earthquake occurrence as obtained from a Weibull distributionanalysis of crustal strain[J]. Tectonophysics,1974,23:318~323
    Kostrov, B V. Seismic moment and energy of earthquakes, and seismic flow of rock. Izv. Acad.Sci. USSR Phys. Solid Earth,1974,1:23~40
    Matthews M V, Ellsworth W L, and Reasenberg P A. A Brownian Model for Recurrent Earthquakes[J].Bulletin of the Seismological Society of America,2002,92(6):2233~2250
    Nishenko S, and Buland R. A generic recurrence interval distribution for earthquake forecasting,Bulletin of the Seismological Society of America,1987,77:1382~1389
    Ogata Y. Estimating the hazard of rupture using uncertain occurrence times ofPaleoearthquakes[J]. J. of Geophys. Res., B, Solid Earth and Planets,1999,104(17):995~18014
    Parsons T. Significance of stress transfer in time~dependent earthquake probabilitycalculations[J]. J. Geophys. Res.2005,110: B05S02
    Parsons T. Monte Carlo method for determining earthquake recurrence parameters from shortpaleoseismi catalogs: Example calculations for California[J]. J. Geophys. Res.,2008,113:B03302
    Parsons T. Earthquake recurrence on the south Hayward fault is most consistent with a timedependent, renewal process[J]. Geophys. Res. Lett.,2008,35: L21301
    Reid, H.F.,1910, The Mechanics of the Earthquake, The California earthquake of April18,1906:Report of the State Earthquake Investigation Commission: Publication No.87, CarnegieInstitution of Washington, v. II,192
    Rikitake T. Probability of earthquake occurrence as estimated from crustal strain,Tectonophysics,1974,23:299~312
    Savage J C, Cockerham, R S. Quasi~periodic occurrence of earthquakes in the1978~1986Bishop~Mammoth Lakes Sequence, Eastern California, Bulletin of the Seismological Societyof America,1986,77(4):1347~1358
    Savage J C,Simpson R W. Surface Strain Accumulation and the Seismic Moment Tensor[J]. Bulletinof the Seismological Society of America,1997,87(5):1345~1353
    Scholz C H. The mechanics of earthquake faulting. Cambrige: Cambrige University Press.439
    Scholz C H. Earthquakes and friction laws. Nature,1998,391(1):36~42
    Schwartz D P, Coppersmith K J. Fault behavior and characteristic earthquake: Examples fromthe Wasatch and San Andreas Fault zones[J]. Journal of Geophysical Research,1984,89:5681~5698
    Shimazaki K, Nakata T. Time~predictable recurrence model for large earthquakes[J].Geophysical Reseach Letters,1980,7(4):279~282
    Utsu, T. Estimation of paramters for recurrence models of earthquake forecasts[J]. Bull.Earthquake Res. Inst. Univ. Tokyo,1984,59:53~66
    Wallace R. E. Earthquake Recurrence Intervals on the San Andreas Fault[J]. Geological Societyof America Bulletin,1970,81:2875~2890
    Wells D L, Coppersmith K J. New empirical relationships among magnitude, rupture length,rupture width, rupture area, and surface displacement[J]. Bulletin of the SeismologicalSociety of America,1994,84(4):974~1002
    Wesnousky S G. Earthquake, Quanternary faults, and seismic hazard in California[J]. J. Geophys.Res.,1986,91(B12):12587~12631
    Working Group on California Earthquake Probabilities. Probabilities of large earthquakesoccuring in California on the San Andreas fault, U.S. Geol. Surv. Open~File Rept,1988:88~398
    Working Group on California Earthquake Probabilities. Probabilities of large earthquakes inthe San Francisco Bay Region, California, U.S. Geol. Surv. Circular1053
    Working Group on California Earthquake Probabilities. Seismic hazards in southern California:probable earthquakes,1994to2024, Bull. Seism. Soc. Am.1995,85:379~439
    Working Group on California Earthquake Probabilities. Earthquake probabilities in the SanFrancisco Bay Region:2000to2030—a summary of findings, U.S. Geol. Surv. Open~FileRept,1999:99~517
    Working Group on California Earthquake Probabilities. Earthquake probabilities in the SanFrancisco Bay Region:2002–2031, U.S. Geol. Surv. Open~File Rept,2003:03~214
    曹刚.内蒙古地震研究.北京:地震出版社,2001.3~5
    陈家鼎,刘婉如,汪仁官.概率统计讲义.北京:高等教育出版社,1983
    陈立春.河套断陷带的古地震、强震复发规律和未来可能强震地点:[硕士学位论文].北京:中国地震局地质研究所,2002
    陈立春,冉勇康,常增沛.色尔腾山山前断裂得令山以东段晚第四纪活动特征与古地震事件[J].地震地质,2003,25(04):555~565
    陈小斌.中国陆地现今水平形变状况及其驱动机制[J].中国科学(D辑),2007,37(8):1056~1064
    邓起东,尤惠川.1985.哪尔多斯周缘断陷盆地带的构造活动特征及其形成机制.现代地壳运动研究(l).北京:地震出版社.58~78.
    邓起东,尤惠川.鄂尔多斯周缘断陷盆地带的构造活动特征及其形成机制.现代地壳运动研究(l).北京:地震出版社,1985.58~78
    邓起东.活动断裂研究理论与应用2.北京:地震出版社,1993.247~264
    邓起东.中国活动构造研究[J].地质论评,1996,42(4):295~299
    邓起东,张培震,冉勇康,等.中国活动构造基本特征[J].中国科学D辑:地球科学,2002,32(12):1020~1030
    范俊喜.鄂尔多斯地块运动特征研究:[博士学位论文].北京:中国地震局地质研究所,2002
    甘卫军,刘百篪,黄雅虹.板内大震复发间隔的概率分布[J].西北地震学报,1999,21(1):7~16
    甘卫军,张锐,张勇,等.中国地壳运动观测网络的建设及应用[J].国际地震动态,2007,7(343):43~52
    国家地震局《鄂尔多斯周缘活动断裂系》课题组.鄂尔多斯周缘活动断裂系.北京:地震出版社,1988.39~76
    国家地震局震害防御司.中国历史强震目录(公元前23世纪一公元1911年).北京:地震出版社,1995.16~17
    何仲太,马保起,卢海峰.大青山山前活动断裂带分段与潜在震源区划分[J].地震地质,2007,29(4):766~775
    胡勐乾.并行计算三维数值模拟在华北地区现今构造变形分析中的应用研究:[硕士学位论文].北京:中国地震局地质研究所,2010
    江娃利,肖振敏,王焕贞.内蒙大青山山前活动断裂带西端左旋走滑现象[J].中国地震,2000,16(3):203~212
    李克,聂宗笙.河套断陷带的形成演化与地震活动性.地壳构造与地壳应力文集(1).北京:地震出版社,1987.42~53
    梁金鹏,谢富仁,李克.大青山地区构造应力场与构造活动方式及地震活动特点[J].地壳构造与地壳应力文集,1997.87~96
    刘静,汪良谋.运用活断层资料评价汾渭地震带中长期强震危险性[J].地震学报,1996,18(4):427~436
    聂宗笙,吴卫民,马保起.公元849年内蒙古包头东地震地表破裂带及地震参数讨论[J].地震学报,2010,32(1):94~107
    冉洪流,周本刚.布朗模型在北京西北地区的应用[J].地震学报,2004,26(增刊):96~102
    冉洪流.时间相依模型与泊松模型计算结果的对比分析——以道孚及炉霍潜源为例[J].震灾防御技术,2006,1(3):245~250
    冉勇康.我国几个典型地点的古地震细研究和大地震重复行为探讨:[博士学位论文].北京:中国地震局地质研究所,1997
    冉勇康,邓起东.古地震学研究的历史、现状和发展趋势[J].科学通报,1999,44(1):12~20
    冉勇康,张培震,胡博,等.大青山山前断裂呼和浩特段晚第四纪古地震活动历史[J].中国地震,2002,18(1):15~27
    冉勇康,陈立春,杨晓平,等.鄂尔多斯地块北缘主要活动断裂晚第四纪强震复发特征[J].中国科学(D辑),2003,33(增刊):135~143
    冉勇康,张培震,陈立春.河套断陷带大青山山前断裂晚第四纪古地震完整性研究[J].地学前缘,2003,10(特刊):207~216
    任俊杰,陈虹.东昆仑断裂带地震复发周期与发震概率研究[J].大地测量与地球动力学,2004,24(3):51~56
    任俊杰,张世民,冉洪流.活断层定量资料在大震年发生率评定中的应用[J].震灾防御技术,2008,3(3):282~291
    王辉,张国民,江在森,等.利用多种地震学参数研究中国大陆地壳应变场[J].地震,2005,25(2):9~18
    汪素云,Ni J,马宗晋,等.华北强震断层面解和震源深度特征[J].地球物理学报,1991,34(1):42~54
    闻学泽.鲜水河断裂带未来三十年内地震复发的条件概率[J].中国地震,1990,6(4):8~16
    闻学泽.活动断裂研究[M].北京:地震出版社,1991.174~183
    闻学泽,罗灼礼,陈农,等.中国大陆的特征地震活动及其中—长期预测研究(一)[J].中国地震,1994a,10(2):101~111
    闻学泽,罗灼礼,陈农,等.中国大陆的特征地震活动及其中—长期预测研究(二)[J].中国地震,1994b,10(3):206~216
    闻学泽.活动断裂地震潜势的定量评估.北京:地震出版社1995
    闻学泽,张培震.活动断裂研究理论与应用5.北京:地震出版社,1996.1~11
    闻学泽.时间相依的活动断裂分段地震危险性评估及其问题[J].科学通报,1998,43(14):1457~1466
    闻学泽.中国大陆活动断裂段破裂地震复发间隔的经验分布[J].地震学报,1999a,21(6):616~622
    闻学泽.中国大陆活动断裂的段破裂地震复发行为[J].地震学报,1999b,21(4):411~418
    吴卫民,李克,马保起,等.活动断裂研究4.北京:地质出版社,1995.123~131
    吴卫民,李克,马保起,等.地壳构造与地壳应力文集(8).北京:地质出版社,1996a.1~10
    吴卫民,聂宗笙,许桂林,等.活动断裂研究5.北京:地质出版社,1996b.113~124
    张国民,汪素云.中国大陆地震震源深度及其构造含义[J].科学通报,2002,47(9):663~668
    张井飞,谢富仁,荆振杰,等.太原盆地地震潜势分析[J].大地测量与地球动力学,2011,31(5):47~51
    张培震,毛凤英.活动断裂研究理论与应用5.北京:地震出版社,1996.12~31
    张培震,邓起东,张国民,等.中国大陆的强震活动与活动地块.中国科学D辑:地球科学,2003,33(增刊):12~20
    张效亮.利用GPS观测数据评估川滇南部地区活动断裂地震危险性:[硕士学位论文].北京:中国地震局地壳应力研究所,2009a
    张效亮,谢富仁.利用GPS数据和实时概率模型评估川滇南部中长期地震危险性[J].大地测量与地球动力学,2009b,29(3):38~41
    张效亮,谢富仁,史保平.利用GPS数据估算川滇南部地震(M_S≥6.5)平均复发间隔[J].地震学报2010,32(1):23~32
    张永谦,滕吉文,王夫运,等.阴山造山带及鄂尔多斯盆地北部地区上地壳的地震波属性结构及岩性推断[J].地球物理学报,2011,54(1):87~97
    张永庆,谢富仁.活动断裂地震危险性的研究现状和展望[J].震灾防御技术,2007a,2(1):64~74
    张永庆,谢富仁,王峰.乌鲁木齐地区活动断裂强震复发概率模型研究[J].地震地质,2007b,29(4):776~786
    张永庆,谢富仁,张效亮,等.新疆地区典型潜在震源区大震年发生率的估计[J].震灾防御技术,2009,4(3):275~288
    宋键.喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究:[博士学位论文].北京:中国地震局地质研究所,2010
    宋键,唐方头,邓志辉,等.喜马拉雅东构造结周边地区主要断裂现今运动特征与数值模拟研究[J].地球物理学报,2011,54(6):1536~1548
    杨晓平,胡博,等.内蒙古色尔腾山山前断裂(乌句蒙口~东风村段)的断层活动与古地震事件[J].中国地震,2002,18(02):127~140
    杨晓平,冉勇康,胡博,等.内蒙古色尔腾山山前断裂带乌加河段古地震活动[J].地震学报,2003,25(01):62~71
    易桂喜,闻学泽,徐锡伟.山西断陷带太原-临汾部分的强地震平均复发间隔与未来危险段落研究[J].地震学报,2004,26(4):387~395
    于洋,孙月静.对数正态分布参数的最大似然估计[J].九江学院学报,2007,26(6):55~57
    周本刚,周庆.对现今地壳变形资料在地震区划中应用的初步探讨[J].中国地震,2005,21(2):155~164
    朱守彪,蔡永恩,石耀霖.青藏高原及邻区现今地应变率场的计算及其结果的地球动力学意义[J].地球物理学报,2005,48(5):1053~1061

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700