用户名: 密码: 验证码:
石墨烯/聚合物复合材料在组织工程支架及药物载体中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石墨烯(graphene, GNS)是碳原子紧密堆积成单层二维蜂窝状晶格结构的一种碳质新材料。自2004年英国Manchester大学的Geim等发现GNS以来,因其独特的结构和优异的力学、电学、热学及化学性能,对其研究和应用已备受关注。利用GNS作为填充材料增强聚合物的力学强度以及利用聚合物作为GNS的修饰材料对GNS进行功能化可能是复合材料领域最有前景的研究。目前,GNS及其衍生物在生物医药方面的研究和应用还处在探索阶段,如何根据实际需求对GNS/聚合物复合材料进行组织工程支架、药物载体等研究是极富挑战的工作。本课题以GNS及其衍生物GO为主要研究对象,探讨研究了GO与聚乙烯醇(PVA)复合、GO与壳聚糖(CS)复合、GNS与聚丙烯酸(PAA)复合,进行性能表征,并研究了GNS/聚合物复合材料在组织工程支架以及药物载体中的应用。主要研究内容和结果如下:
     1、利用静电纺丝法制备氧化石墨烯(GO)/聚乙烯醇(PVA)纳米纤维支架。研究了PVA静电纺丝的条件以及GO加入对PVA纳米纤维的形貌、结构、机械性能及生物相容性的影响。随着GO加入量的增加,GO/PVA纳米纤维支架的直径逐渐变细并出现串珠样结构。拉伸测试发现,随着GO的加入,纳米支架的拉伸强度和弹性模量呈现先增加后降低的趋势,当GO含量为1wt%时,拉伸强度和弹性模量最大,比纯PVA纤维支架分别增加了22%和57%,当GO含量大于3wt%时,力学性能逐渐降低。成骨细胞体外培养的研究中,与纯PVA纤维支架相比,成骨细胞在GO/PVA复合纤维支架表面表现出较高的粘附,增殖和细胞活性。表明了GO/PVA复合纤维支架在组织工程领域具有良好的应用潜能。
     2、利用冷冻干燥法制备了氧化石墨烯(GO)/壳聚糖(CS)多孔干凝胶。研究了GO加入对CS干凝胶形貌、结构、机械性能的影响,并探讨了其对盐酸阿霉素(DOX)的吸附及释放性能。随着GO浓度的增加,凝胶的孔径减小,压缩强度增大。复合凝胶的多孔状结构及较大的比表面积使药物吸附能力增强,当加入5wt%的GO时,GO/CS对DOX的载药量可达96mg/g,比纯CS增加了240%,同时DOX35d的释放量仅为17.4%。表明了复合凝胶具有良好的药物吸附和缓慢释放性能,可用于药物载体。
     3.采用电弧放电技术制备得到较大量的GNS片,尺寸大小为50-200nm,具有良好热稳定性。利用原位聚合丙烯酸单体法制得功能化的GNS (PAA-GNS),实现了GNS在水中较好的溶解性和在体液中的稳定性,实现了阿霉素的高效担载和pH控制释放,当DOX浓度为0.35mg/ml时载药量可达2.183mg/mg,DOX在不同pH的累积释放量为:pH2>pH7>pH10。PAA-GNS是一种较为理想的纳米载体。
Graphene (GNS) is a new carbon material which is closely stacking of carbon atoms to form monolayer two-dimensional honeycomb structure. Since it was found by Geim et al. from Manchester University in2004, GNS and its derivative graphene oxide (GO) has sparked a boom in science and industry circles by virtue of its unique structure and excellent mechanical, electrical, thermal and chemical properties. GNS as a filler material to reinforce mechanical strength of polymer and polymer as the modified materials to functionalize GNS may be the most promising research in composite material field. But the application of GNS in biological medicine is still at the stage of exploration, it will be a challenge to conduct research of GNS/polymer composites for tissue engineering scaffolds and drug carrier to give full play to its excellent properties. In the reseach, we prepared and characterized GO/polyvinyl alcohol (PVA), GO/chitosan (CS) and GNS/polyacrylic acid (PAA) composites around the excellent properties of GNS and its derivative, and studied their applications in tissue engineering scaffolds and drug carrier. The main contents and results are summarized as follows:
     1. GO/PVA nanofibrous scaffold was fabricated by electrospinning technology. The conditions of the PVA electrospinning and the influence of GO on the morphology, microstructure, mechanical properties and biocompatibility of PVA nanofiber were investigated. As the content of GO increased, the diameter of GO/P VA nanofibers turned to be thinner and appearing beaded structure. Increasing the content of GO up to1wt%increased the mechanical strength, but further increasing GO up to3-5%caused the decrease of mechanical strength. When GO content was1wt%, the tensile strength and elastic modulus of GO/PVA were22%and57%higher than pure PVA scaffold. On GO/PVA composite scaffold, the attachment and growth of osteoblasts were good, and the viability and morphology of cells were better than pure PVA scaffold which indicated the composite scaffolds have potential application in tissue engineering field.
     2. GO/chitosan(CS) composite porous xerogels were prepared by a freeze-drying method. The influence of GO content on the morphology, microstructures, mechanical property of CS xerogel and its ability for adsorption and release of doxorubicin hydrochloride (DOX) were investigated. The adding of GO dereased the pore size of the xerogels, but increased the compressive strength. The porous structure of the composites as well as large surface of GO enhanced the drug adsorption ability. When the content of GO was5wt%, the DOX loading ability of GO/CS composites could reach96mg/g, which was240%higher than that of pure CS. The in vitro drug release showed there was only17.4%of DOX release after35d. It indicated good drug adsorption and slow release performance of GO/CS composite porous xerogels, which can be used for drug carrier.
     3. Large quantities of small size GNS sheets with diameters of50-200nm were prepared by arc discharge technology. PAA functionalized GNS (PAA-GNS) was prepared by in-situ polymerization of acrylic monomers. By functionalization, the surfaces of GNS sheets were grafted with-COOH groups which improved the solubility and stability of GNS. This also facilitated chemical binding of DOX to the GNS and realized efficient loading and pH controlled release. With the increase of the initial DOX concentration, the loading capacity of DOX increased and reached2.183mg/mg when the DOX concentration was0.35mg/ml, and the release ratio of DOX in pH2was about twice that of pH7and about seven times of pH10, which indicated that PAA-GNS was the ideal nano carrier.
引文
[1]陈闽江,邱彩玉,孙连峰.浅谈石墨烯的发展与应用[J].物理教学,2010,2:2-10.
    [2]Geim A K, Novoselov K S. The rise of graphene[J]. Nature Materials,2007, 6:83-191.
    [3]Zhang Y B, Tan Y W, Storrner H L, et al. Experimental observation of quantum hall effect and berry s phase in grphene[J]. Nature, 2005,438:201-204.
    [4]Lee C, Wei X D, Kysar J W, et al. Measurement of the elastic properties and intrinsic strength of monolayer graphene[J]. Science,2008, 321:385-388.
    [5]Szabo T, Tombacz E, 1lles E,et al. Enhanced acidity and pH-dependent surface charge characIe rization of successively oxidized graphite oxides [J]. Carbon,2006, 44:537-545.
    [6]Matsuo Y, Tahara K, Sugie Y. Structure and thermal properties of poly(ethylene oxide)-intercalated graphite oxide[J]. Carbon,1997, 35:113-120.
    [7]Novoselov K S, Geim A K, Morozov S V, et al. Electric field effect in atomically thin carbon films[J]. Science,2004,306:666-669.
    [8]Liu Q, Liu Z, Zhang X, et al. Organic photovohaic cells based on an acceptor of soluble graphene[J]. Applied Physics Letters, 2008, 92:223-303.
    [9]Elias D C, Nair R R, Mohiuddin T M G, et al. Control of grapheme, properties by reversible hydrogenation:Evidence for graphene[J]. Science, 2009, 323:610-613.
    [10]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene based composite materials[J]. Nature,2006,442:282-286.
    [11]Jiao I Y, Zhang I, Wang X R, et al. Narrow graphene nanoribbons from carbon nanotubes[J]. Nature,2009,458:877-880.
    [12]迟宝珠.纳米材料的制备及其在电化学生物传感器中的应用[D].长沙,湖南大学,2009,24-32.
    [13]Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Am. Chem. Soc., 1958, 80: 13-39.
    [14]Liu P, Gong K. Synthesis of polyaniline-intercalated graphite oxide by all in situ oxidative polymerization reaction[J]. Carbon, 1999, 37:706-707.
    [15]Vainionpaa S, et al. Biodegradable implants for fracture fixation:early results of treatment of fractures of the ankle[J].Biomaterials,1987,8:46-50.
    [16]Tōrmala P, Vainionpaa S, Kilpikari J, Rokkanen P. The effects of fibre reinforcement and gold plating on the flexural and tensile strength of PGA/PLA copolymer materials in vitro[J]. Biomaterials,1987,8:42-45.
    [17]风兆玄,戚国荣.医用高分子[M].杭州:浙江大学出版社,1989.
    [18]Vion J M, Jerome R, Teyssie P, Aubin M, el al. Synthesis, characterization, and miscibility of caprolactone random copolymers[J]. Macromolecules, 1986,19:1828-1838.
    [19]Fukuzaki H, Yoshida, M, Asano, M, et al. Synthesis of copoly(d,l-lactic acid) with relatively low molecular weight and in vitro degradation[J]. Polymer,1990,31:2006.
    [20]汤顺清,周长忍,邹翰.生物材料的发展现状与展望[J].暨南大学学报(自然科学版),2000,21:122-125.
    [21]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene—ased Composite Materials[J]. Nature,2006,442:282-286.
    [22]Li D, Muller M B, Gilje S, et al. Processable Aqueous Dispersions of Graphene Nanosheets[J]. Nat Nanotechnol,2008,3:101-105.
    [23]杨全红,吕伟,杨承岗,等.自由态二维碳原子晶体——单层石墨烯[J].新型炭材料,2008,23:97-103.
    [24]Brinson L C, Ramanathan T, Piner R D, et al. Functionalized graphene sheets for polymer nanocomposites[J]. Nature Nanotechnology,2008, 327-331.
    [25]Kai W H, Hua L, Hirota Y, et al. Thermal and mechanical properties of a poly(8-caprolactone)/graphite oxide composite[J]. J Appl Polym Sci,2008,107:1 395-1400.
    [26]Huang Y. Chen Y. 1%Functionalization of graphene and their applications[J]. Sci China, 2009,39:887-896.
    [27]Kim H, Abdala A A, Macosko C W. Graphene/polymer nanocmnposites[J]. Maeromolecules, 2010,43:6515-6530.
    [28]Kim J S, Hong S, Park D W, et al. Water—orne graphene—erived conductive SBR prepared by latex heteroeoagulation [J]. Macromolecular Researctt,2010,18:558-565.
    [29]Zhang H, Zheng W, Yan Q, et al. Electrically conductive polyethylene terephthalate/grapheme nanocomposites prepared by melt compounding[J]. Polymer,2010, 51:191-1196.
    [30]Xu Y, Wang Y, Liang J, et al.A hybrid material of graphene and poly(3 4-ethyldiOxythi0phene)with high conductivity, flexibility, and transparency[J]. Nano Research, 2009,2:343-348.
    [31]Kasten P, Luginbuhl R, vanGriensven M, et al. Comparison of human bone marrow stromal cells seeded on calcium-deficient hydroxyapatite, β-tricalcium phosphate and demineralized bone matrix [J]. Biomaterials,2003,24:2593-2603.
    [32]仲维广,施琥.骨组织工程学支架材料研究进展口腔材料器械杂志[J].2003,12:195-197.
    [33]Kim B S, Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering [J]. Trends Biotechnol, 1998, 16:224-230.
    [34]Bacakova L, Filova E, Rypacek F, et al. Cell adhesion on artificial materials for tissue engineering [J]. Physiological Research, 2004, 53:35-45.
    [35]Aoki H, Tomita N, Morita Y. Culture of chondrocytes in fibroinhyrogel sponge[J]. Biomed Mater Eng, 2003,13:309-316.
    [36]费小琛,颜永年,熊卓.骨组织工程PLGA/TCP复合材料的性能研究[J].材料导报,2002,16:63-68.
    [37]Kim K, Yu M, Zong X H,et al. Control of degradation rate and hydorphilicity in electrospun non-woven poly(D,L-latide) nanofiber scaffolds for biomedical applications[J]. Biomaterials, 2003,24:4977-4981.
    [38]Reneker D H. Electrospinning process and applications of electrspun fibers[J]. J.Electrost, 1995,35:151-155.
    [39]Whang K, Thomas CH, Healy K E. A novel method to fabricate biodegradable scaffolds [J]. Polymer,1995,6:837-842.
    [40]Buchko C J, Chen L C, Shen Y, et al. Processing and microstructural characterization of porous biocompatible protein polymer thin films polymer[J]. Polymer, 1999, 40:7397-7407.
    [41]Garnett M C, Gene-delivery systems using cationic polymers[J]. Crit Rev Ther Drug Carrier Syst,1999, 16:147-207.
    [42]Chuang WY, Young TH, Yao CH, Chiu WY. Properties of the poly(vinyl alcohol)/chitosan blend and its effect on the culture of fibroblast in vitro[J]. Biomaterials,1999,20:1479-1487.
    [43]Langer R. Drug delivery and targeting [J]. Nature, 1998, 392:5-10.
    [44]Singh R, Lillard JW Jr, Nanoparticle-based targeted drug delivery [J]. Exp Mol Pathol, 2009, 86:215-223.
    [45]Ta H T, Dass C R, Dunstan D E, Injectable chitosan hydrogels for localised cancer therapy. J Control Release,2008,126:205-216.
    [46]Chen R S, Chen M H, Young T H. Induction of differentiation and mineralization in rat tooth germ cells on PVA through inhibition of ERK1/2[J]. Biomaterial,2009,30:541-547.
    [47]Stankovich S, Dikin D A, Dommett G H B, et al. Graphene-based composite materials[J]. Nature 2006,442:282-286.
    [48]Shi X F, Hudson J L, Spicer P P, et al. Injectable Nanocomposites of Single-Walled Carbon Nanotubes and Biodegradable Polymers for Bone Tissue Engineering[J]. Biomacromolecules, 2006,7:2237-2242.
    [49]Sitharaman B, Shi X, Walboomers X F, et al. In vivo biocompatibility of ultra-short single-walled carbon nanotube/biodegradable polymer nanocomposites for bone tissue engineering[J]. Bone, 2008, 43:362-370.
    [50]Kolodiazhnyi T, Pumera M. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes[J]. Small, 2008,4:1476-1484.
    [51]He H, Riedl T, Lerf A, Klinowski J. Solid-state NMR studies of the structure of graphite oxide[J]. J Phys Chem, 1996, 100:19954-19958.
    [52]Lerf A, He H, Forster M, Klinowski J. Structure of graphite oxide revisited[J]. J Phys Chem B,1998, 102:4477-4482.
    [53]Rao C N R, Sood A K, Subrahmanyam K S, Govindaraj A. Graphene:The New Two-Dimensional Nanomaterial[J]. Angew. Chem. Int. Ed, 2009,48:7752-7777.
    [54]Stankovich S, Dikin D A, Piner R D, et al. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide[J]. Carbon,2007,45:1558-1565.
    [55]Cai W W, Piner R D, Stadermann F J, et al. Synthesis and solid-state NMR structure characterization of C-13-labeled graphite oxide[J]. Science, 2008, 321:1815-1817.
    [56]Hummers W S, Offeman R E. Preparation of graphitic oxide[J]. Journal of the American Chemical Society, 1958, 80:1339-1339.
    [57]Deitzel J M, Kleinmeyer J, Harris D, Tan N C B. The effect of processing variables on the morphology of electrospun nanofibers and textiles[J]. Polymer,2001,42:261-272
    [58]Min B M, You Y, Kim J M, Lee S J, Park W H. Formation of nanostructured poly(lactic-co-glycolic acid)/chitin matrix and its cellular response to normal human keratinocytes and fibroblasts[J]. Carbohydr Polym,2004, 57:285-292.
    [59]Li Y, Thomas W H, Anthony G E, Gary L B, et al. Electrospinning and Stabilization of Fully Hydrolyzed Poly(Vinyl Alcohol)[J]. Chem. Mater, 2003,15:1860-1864.
    [60]Nishio Y, Manley R J. Cellulose-poly(vinyl alcohol) blends prepared from solutions in N,N-dimethylacetamide-lithium chloride[J]. Macromolecules, 1988,21:1270-1277.
    [61]Kaczmarek H, Podgorski A. Photochemical and thermal behaviours of poly(vinyl alcohol)/graphite oxide composites [J]. Polym Degrad Stab,2007,92:939-946.
    [62]Fan H L, Wang L L Zhao K K, et al. Fabrication, mechanical properties, and biocompatibility of graphene-reinforced chitosan composites[J]. Biomacromolecules, 2010, 11:2345-2351.
    [63]Wang Y, Shi Z X, Fang J H, Xu H J, et al.Graphene oxide/polybenzimidazole composites fabricated by a solvent-exchange method[J]. Carbon,2011,4:1199-1207.
    [64]von Recum A F, van Kooten T G. The influence of micro-topography on cellular response and the implications for silicone implants[J]. J Biomater Sci Polym,1995,7:181-198.
    [65]Liu Y, Yu D S, Zeng C, Miao Z C, Dai L M. Biocompatible Graphene Oxide-Based Glucose Biosensors[J]. Langmuir,2010, 26:6158-6160.
    [66]Akasaka T, Yokoyama A, Matsuoka M, Hashimoto T, Watari F. Thin films of single-walled carbon nanotubes promote human osteoblastic cells (Saos-2) proliferation in low serum concentrations[J]. Mater Sci Eng C-Mater Biol Appl, 2010, 30: 391-399.
    [67]Volda I M N, Varum K M, Guibal E, Smidsrod O. Binding of ions to chitosan-selecti ity studies[J]. Carbohydr Polym,2003,54:471-477.
    [68]Li D, Muller M B, Gilje S, Kaner R B, Wallace G G. Processable aqueous dispersions of graphene nanosheets[J]. Nature Nanotechnol, 2008, 3:101-105.
    [69]Seredych M, Bandosz T J. Graphite oxide/AlZr polycation composites: surface characterization and performance as adsorbents of ammonia[J]. Mater Chem Phys, 2009, 117: 99-106.
    [70]Zhang J N, Huang Z H, Lv R, Yang Q H, Kang F Y. Effect of growing CNTs onto bamboo charcoals on adsorption of copper ions in aqueous solution[J]. Langmuir, 2008, 25:269—274.
    [71]Zhang N, Qiu H, Si Y, Wang W, Gao J. Fabrication of highly porous biodegradable monolithsn strengthened by graphene oxide and their adsorption of metal ions[J]. Carbon, 2011, 49:827-837.
    [72]Itokazu M, Kumazawa S, Wada E, Wenyi Y. Sustained release of adriamycin from implanted hydroxyapatite blocks for the treatment of experimental osteogenic sarcoma in mice[J]. Cancer Lett,1996,107:11-18.
    [73]Gabizon A, Shmeeda H, Barenholz Y. Pharmacokinetics of pegylated liposomal doxorubicin-review of animal and human studies[J]. Clin Pharmacokinet,2003,42:419-436.
    [74]Nakanishi T, Fukushima S, Okamoto K, Suzuki M, et al. Development of the polymer micelle carrier system for doxorubicin[J]. J Control Release, 2001,74:295-302.
    [75]Sigomoto M, Morimoto M, Sashiwa H, Saimoto H, Shigemasa Y. Preparation and characterization of water-soluble chitin and chitosan derivatives[J]. Carbohydr Polym, 1998, 36: 49-59.
    [76]Du X S, Xiao M, Meng Y Z, Hay A S. Direct synthesis of poly(arylenedisulfide)/carbon nanosheet composites via the oxidation with graphite oxide[J]. Carbon, 2005,43:195-197.
    [77]Yang X, Zhang X, Liu Z, Ma Y, Huang Y, et al. High-efficiency loading and controlled release of doxorubicin hydrochloride on graphene oxide[J]. J. Phys. Chem. C, 2008, 112:17554-17558.
    [78]Sema, E.; Saraydin D, Interpenetrating polymeric network hydrogels for potential gastrointestinal drug release[J]. Polym Int,2007, 56:1371-1377.
    [79]Park S, Mohanty N, Suk J W, Nagaraja A, et al. Biocompatible, robust free-standing paper composed of a TWEEN/graphene composite[J]. Adv. Mater.,2010,22:1736-1740.
    [80]Zhang Y B, Ali S F, Dervishi E, Xu Y, Li Z R, et al. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PCl2 cells[J]. ACS Nano, 2010,4:3181-3186.
    [81]Zhang R, Hummelgard M, Gang Lv, Hakan Olin. Real time monitoring of the drug release of rhodamine B on graphene oxide[J]. Carbon, 2011,49:1126-1132.
    [82]Li N, Wang Z, Zhao K, Shi Z, Gu Z, et al. Large scale synthesis of N-doped multi-layered grapheme sheets by simple arc-discharge method[J]. Carbon, 2010, 48:255-259.
    [83]Nimmagadda A, Thurston K, Nollert M U, McFetridge PS. Chemical modification of SWNT alters in vitro cell-SWNT interactions[J]. J. Biomed. Mater. Res., Part A,2006,76:614-625.
    [84]Li J, Chen J, Shen B, Yan X, Xue Q. Temperature dependence of the field emission from the few-layer graphene film[J]. Applied Physics Letters 2011,99:163103.
    [85]Liu Z, Robinson T, Sun X, Dai H. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs[J]. J. Am. Chem. Soc,2008,130:10876-10877.
    [86]Wu Y, Wang B, Ma Y, Huang Y, Li N, et al. Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films[J]. Nano Res,2010, 3:661-669.
    [1]Kim B S, Mooney D J. Development of biocompatible synthetic extracellular matrices for tissue engineering[J]. Trends in Biotechnol,1998, 16:224-30.
    [2]Mathews D T, Birney YA, CahillPA, McGuinness G B. Vascular cell viability on polyvinyl alcohol hydrogels modified with water-soluble and insoluble chitosan[J], J Biomed Mater Res B Appl Biomater,2008,84:531-40.
    [3]Asakura F, Yilmaz H, Abdo G, et al. Preclinical testing of a new clot-retrieving wire device using polyvinyl alcohol hydrogel vascular models[J]. Neuroradiology,2007, 49:243-51.
    [4]Lao L L, Ramanujan R V. Magnetic and hydrogel composite materials for hyperthermia applicationrs[J].J Mater Sci Mater Med,2004,15:1061-4.
    [5]Maruoka S, Matsuu-'a T, Kawasaki K, et al. Biocompatibility of polyvinyl alcohol gel as a vitreous substitute[J]. Curr Eye Res, 2006, 31:599-606.
    [6]Wmiams s. Mechanical testing of a new biomaterial for potential use as a vascular graft and articular cartilage replacement[D]. MS thesis, Georgia Institute of Technology, 1998:10.
    [7]李玲琍,李光,郭悦文,江建明.聚乙烯醇/丝素蛋白引导骨组织再生膜材料的制备和性能[J].材料导报研究篇,2009,23:29-32.
    [8]Xiao X, Liu R, Huang Q. Preparation and characterization of nano-hydroxyapatite/polymer composite scaffolds[J]. J Mater Sci: Mater Med, 2008,19:3429-35
    [9]Mansur H S, Costa H S. Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications[J]. Chemical Engineering Journal,2008,137:72-83.
    [10]Kim G M, Asran ASh, Michler G H, Simon P, Kim J S.Electrospun PVA/HAp nanocomposite nanofibers:biomimetics of mineralized hard tissues at a lower level of complexity[J]. Bioinsp.Biomim,2008,3:1-12.
    [11]Song W, Ren W, Wan C, Esquivel A O, Shi T, Blasier R, Markel D C. A novel strontium-doped calcium polyphosphate/erythromycin/poly(vinyl alcohol) composite for bone tissue engineering[J]. J Biomed Mater Res A,2011,98:359-71.
    [12]Zeng S, Fu S, Guo G, Liang H, Qian Z; Tang, X, Luo F. Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol) composite membranes for guided bone regeneration[J]. J Biomed Nanotechno,2011,7:549-57.
    [13]Costa H S, Stancioli E F, Pereira M M, Orefice R L, Mansur H S. Synthesis, neutralization and blocking procedures of organic/inorganic hybrid scaffolds for bone tissue engineering applications[J]. J Mater Sci Mater Med, 2009, 20: 529-35.
    [14]Mohammadi Y, Soleimani M, Fallahi-Sichani M, Gazme A, et al. Nanofibrous poly(epsilon-caprolactone)/poly(vinyl alcohol)/chitosan hybrid scaffolds for bone tissue engineering using mesenchymal stem cells[J]. Int J Artif Organs,2007,30:204-11.
    [15]Shafiee A, Soleimani M, Chamheidari GA, Seyedjafari E, Dodel M, Atashi A, Gheisari Y. Electrospun nanofiber-based regeneration of cartilage enhanced by mesenchymal stem cells[J]. Journal of Biomedical Materials Research Part A,2011,99A:467-78.
    [16]Spiller K L, Holloway J L, Gribb M E, Lowman A M. Design of semi-degradable hydrogels based on poly(vinyl alcohol) and poly(lactic-co-glycolic acid) for cartilage tissue engineering[J]. J Tissue Eng Regen Med, 2011,5:636-47.
    [17]Abedi G, Sotoudeh A, Soleymani M, Shafiee A, Mortazavi P, Aflatoonian M R. A Collagen-Poly(vinyl alcohol) Nanofiber Scaffold for Cartilage Repair[J]. J Biomater Sci Polym Ed, 2011,22:2445-55.
    [18]Mohan N, Nair P D, Tabata Y. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds[J]. J Biomed Mater Res A,2010,94:146-59.
    [19]卢华定,蔡道章,刘青,等聚乙烯醇,羟基磷灰石复合水凝胶移植修复兔膝关节软骨缺损[J].中国矫形外科杂志,2004,12:1701-3.
    [20]Bodugoz-Senturk H, Macias C E, Kung J H, et al. Poly(vinyl alcohol)-crylamide hydrogels as load-bearing cartilage substitute [J]. Biomaterials, 2009, 30:589-96.
    [21]Bonakdar S, Emami S H, Shokrgozar M A, et al. Preparation and characterization of polyvinyl alcohol hydrogels crosslinked by biodegradable polyurethane for tissue engineering of cartilage[J]. Materials Science and Engineering C,2010, 30:636-43.
    [22]Bichara DA, Zhao X, Hwang N S, et al. Porous poly(vinyl alcohol)-alginate gel hybrid construct for neocartilage formation using human nasoseptal cells[J] Journal of Surgical Research, 2010,163:331-6.
    [23]Lee C T, Kung P H, Lee Y D. Preparation of poly(vinyl alcohol)-chondroitin sulfate hydrogel as matrices in tissue engineerin[J]. Carbohydrate Polymers,2005,61:348-54.
    [24]Ezequiel S. Costa-Junior, Edel F, et al. Preparation and characterization of chitosan/poly(vinyl alcohol) chemically crosslinked blends for biomedical applications[J]. Carbohydrate Polymers,2009,76:472-481.
    [25]Duan B, Wu L L, Li X R. Degradation of electrospun PLGA-chitosan/PVA membranes and their cytocompatibility in vitro[J]. Jounal of Biomaterials Science-Polymer Ediyion, 2007, 18: 95-115.
    [26]Nguyen T H, Kim Y H, Song H Y, Lee B T. Nano Ag loaded PVA nano-fibrous mats for skin applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials,2011, 96B:225-33.
    [27]Asran A S, Razghandi K, Aggarwal N, Michler G H, Groth T. Nanofibers from blends of polyvinyl alcohol and polyhydroxy butyrate as potential scaffold material for tissue engineering of skin[J]. Biomacromolecules,2010,11:3413-21.
    [28]Li Q H, Zhou H. Studies on like heparin of PVA blends antithrombin[J]. Chinese Journal of Biomedical Engineering, 1999,18:15.
    [29]Thomas L V, Arun U, Remya S, Nair P D. A biodegradable and biocompatible PVA-citric acid polyester with potential applications as matrix for vascular tissue engineering[J]. J Mater Sci Mater Med,2009,20:S259-69.
    [30]Mathews D T, Birney Y A, Cahill P A. Vascular cell viability on polyvinyl alcohol hydrogels modified with water-soluble and-insoluble chitosan[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2008, 84B:531-40.
    [31]Vrana N E, Liu Y, McGuinness G B, Cahill P A.Characterization of poly(vinyl alcohol)/chitosan hydrogels as vascular tissue engineering scaffolds[J]. Macromolecular Symposia, 2008,269:106-10.
    [32]Wan W K, Campbell G, Zhang Z F, Hui A J, Boughner D R.Optimizing the tensile properties of polyvinyl alcohol hydrogel for the construction of a bioprosthetic heart valve stent[J]. J Biomed Mater Res,2002,63:854-61.
    [33]Millon L E, Nieh M P, Hutter J L, Wan W. SANS characterization of an anisotropic poly(vinyl alcohol) hydrogel with vascular applications[J]. Macromolecules,2007,40: 3655-62.
    [34]Liu Y, Vrana N E, Cahill P A, McGuinness G B. Physically crosslinked composite hydrogels of PVA with natural macromolecules:structure, mechanical properties, and endothelial cell compatibility [J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials, 2009, 90B:492-502.
    [35]Perumcherry S R, Chennazhi K P, Nair S V, et al. A novel method for the fabrication of fibrin-based electrospun nanofibrous scaffold for tissue-engineering applications[J]. Tissue Engineering Part C-Method, 2011,17:1121-30.
    [36]Mottaghitalab F, Farokhi M, Mottaghitalab V, Ziabari M, et al. Enhancement of neural cell lines proliferation using nano-structured chitosan/poly(vinyl alcohol) scaffolds conjugated with nerve growth factor[J]. Carbohydrate Polymers, 2011,86:526-35.
    [37]Chen M H, Chen Y J, Liao C C, Chan Y H, Lin C Y, Chen R S, Young T H. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface[J]. Journal of Biomedical Materials Research Part A,2009,90:1066-72.
    [38]Teramura Y, Kaneda Y, Iwata H. Enclosure of islets with thin-layer membrane of poly(vinyl alcohol) [J]. Xenotransplantation, 2007, 14:546.
    [39]Bader R A, Rochefort W E. Rheological characterization of photopolymerized poly(vinyl alcohol) hydrogels for potential use in nucleus pulposus replacemen[J]. J Biomed Mater Res A, 2008,86:494-501.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700