用户名: 密码: 验证码:
亚香棒虫草的培养特性及对锌锰的抗性和富集机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
亚香棒虫草(Cordyceps hawkesii),是寄生于宿主昆虫湖南棒蝠蛾(Napialtshunanensis)形成的一种食药用真菌,又名霍克斯虫草,古尼虫草。它的化学成份与冬虫夏草相似,具有一定的药用价值,是有待开发利用的虫草资源。
     本文以亚香棒虫草为研究对象,通过对培养基的筛选与优化确定了亚香棒虫草菌丝的最佳培养条件;并通过对液体培养条件下,不同浓度Zn和Mn的对亚香棒虫草菌丝生长的影响,对菌丝体中Zn和Mn的积累和在细胞中的分布的影响,对菌丝过氧化程度和抗氧化酶活力的变化的影响,探讨了亚香棒虫草对Zn和Mn的抗性和富集机制。
     1.亚香棒虫草的培养特性
     通过对6种不同的固体培养基进行筛选试验,确定了亚香棒虫草的最佳固体培养基。液体培养基的最佳碳源、氮源通过单因素试验,发现液体培养基的最佳碳源、氮源分别是葡萄糖、蛋白胨。在此基础上进行正交试验确定了亚香棒虫草最佳液体培养基。以该液体培养基对菌种进行培养,测定生物量得出亚香棒虫草的液体生长曲线。
     2.液体培养条件下,亚香棒虫草菌丝对Zn的耐性和富集特性
     低浓度Zn对亚香棒虫草菌丝的生长表现出一定促进作用,Zn浓度继续增高则使亚香棒虫草菌丝生物量显著降低。亚香棒虫草菌丝对锌有较强的耐受能力,最大耐受浓度在25g L-1左右。且亚香棒虫草菌丝细胞具有较强的Zn吸收积累能力,达到了超积累植物10000mg/kg以上的标准。亚香棒虫草菌丝中过氧化产物(MDA)和可溶性蛋白(SP)随着培养基中Zn浓度的升高呈先上升后下降的趋势。亚香棒虫草菌丝中过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、过氧化物酶(POD)均在不同Zn浓度下表现出一定的活性。菌丝细胞Zn离子主要聚集在细胞的壁、膜、细胞器等非可溶性组分(93.68%-98.15%)。亚香棒虫草的鸟苷和腺苷含量与Zn浓度呈显著负相关关系。液体培养条件下亚香棒虫草菌丝体对Zn的强耐性和富集能力,说明亚香棒虫草菌丝体可能在环境修复,尤其是修复Zn污染的水体有应用前景。
     3.液体培养条件下,亚香棒虫草菌丝对Mn的耐性和富集特性
     低浓度Mn对亚香棒虫草菌丝的生长表现出一定促进作用,Mn浓度继续升高则使亚香棒虫草菌丝生物量显著降低。Mn浓度30g L-1为亚香棒虫草菌丝生长极限浓度。亚香棒虫草菌丝中过氧化氢酶(CAT)、超氧化物歧化酶(SOD)、过氧化物酶(POD)均在不同Zn浓度下表现出一定的活性,具有不同的变化趋势,说明细胞通过抗氧化酶的协同作用抵抗氧化胁迫。菌丝细胞中可溶性组分Mn占总量百分比极低(7.21%-10.38%),可见可溶性组分在亚香棒虫草菌丝细胞富集Mn过程中起次要作用。随Zn浓度升高,菌丝中鸟苷与腺苷含量有不同程度降低。
As a kind of edible and medicinal fungi, parasitic on Napialts hunanensis,Cordyceps hawkesii is similar with Cordyceps sinensis in the chemical constituentsand pharmacological effects, so Cordyceps hawkesii is valuable as a new kind of drugresources.
     To culture Cordyceps hawkesii mycelium in solid state fermentation andsubmerged cultuer, the medium and culture conditions were optimized. The effect ofdifferent concentrations of Zn and Mn on mycelial growth, Zn and Mn accumulationand distribution in the mycelian cell, changes of antioxidant enzyme activity andPeroxidation degree in submerged culture were investigated. Zn and Mn resistanceand accumulation mechanism in Cordyceps hawkesii were also discussed.
     1. Cultural characteristic in Cordyceps hawkesii
     Six different kinds solid culture medium were compared to determined a suitableone. The optimum carbon source and nitrogen source were glucose and peptone insingle factor experiment. On the basis of the above, the orthogonal experiment wasdone to determined the optimum liquid culture medium in Cordyceps hawkesii. Thegrowth curve of Cordyceps hawkesii mycelium in submerged culture was finished.
     2. The zinc tolerance in Cordyceps hawkesii in submerged culture
     Low zinc concentrations showed a promoting effect to the growth of mycelia inCordyceps hawkesii. But the mycelia biomass significantly reduced with theincreasing concentration of zinc. Cordyceps hawkesii hyphae show a strong toleranceto zinc up to zinc concentration in25g L-1. The mycelium cells can absorb andaccumulate zinc up to96.39mg g-1, achieved the standard of Hyperaccumulationplants of10000mg kg-1. Peroxidation product (MDA) and soluble protein (SP) inCordyceps hawkesii mycelium was first increased then decreased with zincconcentration increasing. Catalase (CAT), superoxide dismutase (SOD), peroxidase(POD) in different zinc concentrations showed there effects in antioxidative damage.Zinc ion in cells mainly concentrated in the non soluble fractions (93.68%-98.15%)such as cell wall, cell membrane, cell device and so on. Guanosine and adenosinecontent was negatively related to zinc concentration. The high resistance to zinc stressand the high ability to accumulate zinc under submerged culture suggest that Cordyceps hawkesii may be applied to the bioremediation, especially contaminatezinc polluted water.
     3. The manganese tolerance in Cordyceps hawkesii in submerged culture
     Low manganese concentrations showed a promoting effect to the growth ofmycelia in Cordyceps hawkesii. But the mycelia biomass significantly reduced withthe increasing concentration of manganese. Cordyceps hawkesii mycelia can grow inmanganese concentration up to30g L-1. Catalase (CAT), superoxide dismutase(SOD), peroxidase (POD) in different manganese concentrations showed there effectsin antioxidative damage. In mycelial soluble fractions, manganese percentage wasvery low (7.21%-10.38%). It shows that soluble components plays a secondary rolein manganese accumulation. With manganese concentration increasing, guanosine andadenosine content in mycelium decreased.
引文
[1]敬一兵.虫草[M].昆明:云南科技出版社,1986.31-50.
    [2]吴德龙,王卫芳,薛芳森等.亚香棒虫草的研究[J].江西农业大学学报,1997,19(2):31-36.
    [3]肖志明,李廷宝,陈华荣等.亚香棒虫草寄主昆虫研究初报[J].中国中药杂志,1981,(6):61-65.
    [4]朱未来.亚香棒虫草国内研究和利用现状[J].中国中医药信息杂志,1995,2(8):10-11.
    [5]张诚,涂艳,陈柳萌等.亚香棒虫草菌丝体不同培养基筛选试验[J].江西农业学报,2008,20(12):95-96.
    [6]章乃荣.一种冬虫夏草的类似品——亚香棒虫草[J].湖南医药杂志,1987,2(20):51-54.
    [7]黄和意,周胜辉,何小玲.亚香棒虫草和冬虫夏草化学成分比较[J].中草药,1980,11(10):435-439.
    [8]雒敏,赵国士.亚香棒虫草药用价值初探[J].山西大学学报,1999,22(2):174-178.
    [9] Gigliuto C M, Stone K E, Algus M. The use of mannitol in intracerebral bleeds in themedical ICU[J]. N J Med,1991,88(1):48-51.
    [10]姜平.冬虫夏草的成分、药理与功能[J].西北医学杂志,1987,2(4):43-45.
    [11]贺新生.中国自然保护区大型真菌生物多样性研究进展[J].中国食用菌,2004,23(5):3-4.
    [12]林晓民,李振岐,军侯等.大型真菌的生态类型[J].西北农林科技大学学报(自然科学版),2005,33(2):89-92.
    [13]杨英波,孙丽宾.城市土壤重金属污染现状与控制对策[J].环境保护科学,2009,35(4):79-81.
    [14]何翊,吴海.生物修复技术在重金属污染治理中的应用[J].化学通报,2005,1(5):36-42.
    [15]Demirbas A. Accumulation of heavy metals in some edible mushrooms from Turkey[J].Food Chemistry,2000,68(4):415-419.
    [16]Gaso M I, Segovia N, Morton O et al.137Cs and relationships with major and traceelements in edible mushrooms from Mexico[J]. The Science of The Total Environment,2000,262(1-2):73-89.
    [17]Cocchi L, Vescovi L, Petrini L E et al. Heavy metals in edible mushrooms in Italy[J].Food Chemistry,2006,98(2):277-284.
    [18]Purchase D, Scholes L N, Revitt D M et al. Effects of temperature on metal tolerance andthe accumulation of Zn and Pb by metal-tolerant fungi isolated from urban runoff treatmentwetlands[J]. J Appl Microbiol,2009,106(4):1163-1174.
    [19]Aldstadt Iii J H, Mueller G M, Aruguete D M. Accumulation of several heavy metals andlanthanides in mushrooms (Agaricales) from the Chicago region[J]. Science of the TotalEnvironment,1998,224(1-3):43.
    [20]Baeza A, Hernández S, Guillén F J et al. Radiocaesium and natural gamma emitters inmushrooms collected in Spain[J]. The Science of The Total Environment,2004,318(1-3):59-71.
    [21]Vetter J. Data on sodium content of common edible mushrooms[J]. Food Chemistry,2003,81(4):589-593.
    [22]Brooks R R, Lee J, Reeves R D et al. Detection of nickeliferous rocks by analysis ofherbarium specimens of indicator plants[J]. Journal of Geochemical Exploration,1977,7(1):49-57.
    [23]Borovicka J, Randa Z, Jelinek E et al. Hyperaccumulation of silver by Amanitastrobiliformis and related species of the section Lepidella[J]. Mycological Research,2007,111(11):1339-1344.
    [24]程显好,盖宇鹏,孙慧涌.蛹虫草(Cordyceps militaris)对锌的耐性与富集特征[J].生态学报,2010,30(6):1449-1455.
    [25]Byrne A R, Tu ek-nidari M. Arsenic accumulation in the mushroom Laccariaamethystina[J]. Chemosphere,1983,12(7–8):1113-1117.
    [26]Borovi ka J, anda Z. Distribution of iron, cobalt, zinc and selenium in macrofungi[J].Mycological Progress,2007,6(4):249-259.
    [27]Demirbas A. Concentrations of21metals in18species of mushrooms growing in the EastBlack Sea region[J]. Food Chemistry,2001,75(4):453-457.
    [28]García M A, Alonso J, Melgar M J. Lead in edible mushrooms: Levels andbioaccumulation factors[J]. Journal of Hazardous Materials,2009,167(1-3):777-783.
    [29]Vaaramaa K, Solatie D, Aro L. Distribution of210Pb and210Po concentrations in wildberries and mushrooms in boreal forest ecosystems[J]. Science of the Total Environment,2009,408(1):84-91.
    [30]Rudawska M, Leski T. Macro-and microelement contents in fruiting bodies of wildmushrooms from the Notecka forest in west-central Poland[J]. Food Chemistry,2005,92(3):499-506.
    [31]刘文群,徐尔尼,李曼等.真菌对微量元素铁、锌、硒生物富集作用的研究[J].环境与开发,2000,15(3):3-4.
    [32]李三暑,雷锦桂,颜明娟.镉对姬松茸细胞悬浮培养的影响及其在细胞内的分布[J].江西农业大学学报,2001,23(3):329-331.
    [33]刘晓蓉.重金属铜锌对马尾松的外生菌根真菌的影响[J].广东轻工职业技术学院学报,2003,2(1):10-13.
    [34]安鑫龙,周启星,李婷.羊肚菌菌丝体对镐、铅及其复合污染的生长与富集响应[J].应用基础与工程科学学报,2008,16(1):35-41.
    [35]Vimala R, Das N. Biosorption of cadmium (II) and lead (II) from aqueous solutions usingmushrooms: A comparative study[J]. Journal of Hazardous Materials,2009,168(1):376-382.
    [36]安鑫龙,周启星.平菇菌丝体对Cd、Pb及其复合污染的生长与富集响应[J].中国环境科学,2008,28(7):630-633.
    [37]安鑫龙,周启星,李婷等.硬田头菇菌丝体对镉、铅及其复合污染的生长与富集响应[J].浙江大学学报,2008,34(4):461-466.
    [38]陈翠雪,李清彪,邓旭.黄孢展齿革菌菌丝球同时吸附铅镉离子的动力学[J].离子交换与吸附,2003,19(2):133-138.
    [39]袁瑞奇,李自刚,屈凌波等.食用菌栽培中重金属污染与控制技术研究进展[J].河南农业大学学报,2001,35(2):159-162.
    [40]张晓柠,兰进.食药用菌重金属富集机理及应用研究进展[J].时珍国医国药,2006,17(12):2593-2594.
    [41]刘瑞霞,汤鸿霄.重金属的生物吸附机理及吸附平衡模式研究[J].化学进展,2002,14(2):87-92.
    [42]黄晨阳,张金霞.食用菌重金属富集研究进展[J].中国食用菌,2004,23(4):3-9.
    [43]王保军,杨惠芳.真菌对重金属的抗性及解毒作用[J].微生物学通报,1991,18(6):352-356.
    [44]徐柳,宋琴,茆灿泉.金属结合蛋白(肽)与环境重金属生物修复[J].中国生物工程杂志,2004,24(4):39-43.
    [45]Van L, Le Duy T. Linhchi mushrooms as biological monitorsfor<sup>137</sup>Cs pollution[J]. Journal of Radioanalytical and NuclearChemistry,1991,155(6):451-458.
    [46]Ouzouni P K, Veltsistas P G, Paleologos E K et al. Determination of metal content in wildedible mushroom species from regions of Greece[J]. Journal of Food Composition andAnalysis,2007,20(6):480-486.
    [47]郑喜珅,鲁安怀,高翔等.土壤中重金属污染现状与防治方法[J].土壤与环境,2002,11(1):79-84.
    [48]鲍桐,廉梅花,孙丽娜等.重金属污染土壤植物修复研究进展[J].生态环境,2008,17(2):562-565.
    [49]梁家妮,马友华,周静.土壤重金属污染现状与修复技术研究[J].农业环境与发展,2009,4:45-49.
    [50]张贵龙,任天志,郝桂娟等.生物修复重金属污染土壤的研究进展[J].化工环保,2007,27(4):328-333.
    [51]刘磊,肖艳波.土壤重金属污染治理与修复方法研究进展[J].长春工程学院学报(自然科学版),2009,1(10):73-78.
    [52]周启星,安鑫龙,魏树和.大型真菌重金属污染生态学研究进展与展望[J].应用生态学报,2008,19(8):1848-1853.
    [53]张宗豪.不同培养基对北虫草生长的影响[J].青海畜牧兽医杂志,2009,39(4):6-7.
    [54]钟丽娟,赵新海,张庆华等.不同固体培养基对虫草菌丝生长及其腺苷含量的影响[J].饲料工业,2009,30(10):35-37.
    [55]Aldrich M V, Gardea-Torresdey J L, Peralta-Videa J R et al. Uptake and Reduction ofCr(VI) to Cr(III) by Mesquite (Prosopis spp.): Chromate Plant Interaction in Hydroponicsand Solid Media Studied Using XAS[J]. Environmental Science&Technology,2003,37(9):1859-1864.
    [56]刘灿,生吉萍,申琳.不同成熟度双孢菇子实体主要营养元素与矿物质的光谱分析[J].光谱学与光谱分析,2010,30(10):2820-2823.
    [57]周荣,王加启,周振峰等.饲料非蛋白氮与可溶性蛋白测定方法概述[J].中国奶牛,2011,(11):39-41.
    [58]李春喜,姜丽娜,邵云.生物统计学[M].北京:科学出版社,2005.57-62.
    [59]刘冰,梁婵娟.生物过氧化氢酶研究进展[J].中国农学通报,2005,21(5):223-232.
    [60]蒋选利,李振岐,康振生.过氧化物酶与植物抗病性研究进展[J].西北农林科技大学学报(自然科学版),2001,29(6):124-129.
    [61]国占生.超氧化物歧化酶样活性的测定方法[J].衡水师专学报,2001,3(2):39-41.
    [62]单振秀,江澜,李宏.抗Cr6+真菌细胞壁破碎方法的研究[J].矿业安全与环保,2008,35(5):10-11.
    [63]陈玉婷,朱曼萍,王丹红等. HPLC测定冬虫夏草不同药用部位腺苷的含量[J].中国中药杂志,2007,32(9):857-858.
    [64]施新琴,顾寅钰,张亚平等.高效液相色谱法测定虫草中虫草素和腺苷含量的研究[J].山东蚕业,2009,2:8-10.
    [65]刘灵芝,钟广蓉,熊莲等.过氧化氢酶的研究与应用新进展[J].化学与生物工程,2009,26(3):15-17.
    [66]马旭俊,朱大海.植物超氧化物歧化酶(SOD)的研究进展[J].遗传,2003,25(2):225-231.
    [67]田国忠,李怀方,裘维蕃.植物过氧化物酶研究进展[J].武汉植物学研究,2001,(4):332-344.
    [68]李绍平,李萍,季晖等.天然与发酵培养冬虫夏草中核苷类成分的含量及其变化[J].药学学报,2001,36(6):436-439.
    [69]李非里,刘丛强,宋照亮.土壤中重金属形态的化学分析综述[J].中国环境监测,2005,21(4):21-27.
    [70]李祥玲,胡劲松,陈作红. HPLC测定人工蛹虫草及其培养基中虫草素和腺苷含量[J].湖南师范大学自然科学学报,2006,33(2):107-111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700