用户名: 密码: 验证码:
液化场地低承台桩基础抗震作用机理的数值分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
桩基础是应用范围最广,适用性能最强的一种深基础形式。在近些年来的地震中,桩基础体现了较好的抗震性能,但是也暴露出了多种破坏问题,在地震中,因为土体液化而使得桩基础丧失承载力导致其破坏是最常见的一种形式。目前,桩基础抗震设计理论明显落后于实际工程的需求,尤其在抗液化设计方面,还主要以折减计算或者经验计算为主,目前,还没有提出科学合理的设计方法。然而,对于该方面的研究主要集中于室内试验和静力解析法,很大程度上依赖于静力条件下的理论和经验,对液化时桩-土的作用机理的研究不够深入。
     在对国内外相关研究进行比较全面的了解和分析后,本文依托山西省科技攻关项目(地震荷载作用下桩和土体共同作用的试验研究),在对室内试验数据处理分析的基础上,提出了宏观的数值模拟力学参数,利用midas-GTS岩土与隧道专业三维有限元分析程序,对液化场地上低承台群桩建立了数值分析模型;在相同的动力荷载作用下,探讨了考虑承台下土作用时,不同桩间距情况下桩基础竖向承载力的变化规律,和承台厚度对桩基础竖向承载力的影响,以及群桩中不同位置基桩在地震作用过程中的工作特性。结果表明:
     1)在地震作用下,低承台桩基础对改善液化场地的抗液化能力具有较好的效果,桩间距愈小愈明显;由于桩基础的存在改变了原有场地孔隙水压力的消散速度,承台下表层土体孔隙水压力消散速度明显减缓;
     2)静载作用时,在桩体数量相同的情况下,桩基础承载力大小的主导因素是承台尺寸,承台尺寸越大承载力越大,而桩间距的影响不明显;
     3)在地震作用过程中,桩间距较大的桩基础,抗液化能力较弱,其竖向承载力衰减的速度快;随着地震时间的持续,不论桩间距大小,液化区域继续扩大,承载力都会进一步损失,仅是损失速度不同;
     4)改变承台的厚度,在静载作用下,对桩基础承载力的影响不明显,在地震作用下,承台的厚度,对桩基础的承载力有明显影响,厚度愈大,刚度愈大,抗液化的能力越强;
     5)低承台桩基中的基桩,按位置不同可以分为中桩、角桩和边桩三类,在地震荷载作用下,借助桩侧摩阻力累计系数(Acp)曲线的变化,不同位置基桩周围的土体的液化响应特性不同,基桩中,中桩的承载力受液化折减最小,边桩次之,角桩最大
     6)在地震作用过程中,边桩的抗震性能与地震波传来的方向有关,迎着地震波传来方向的边桩受地震影较大。
The pile foundation is one kind of deep foundation forms which applied broadest, and suitable almost all situation grounds. Study on lateral, the capacity of pile in the soft soil layers has generally became important subject in the aseismic design of Foundation Engineering throughout the world, however, it disasters occur frequent, especially in liquefiable soil layers through all previous earthquakes. Due to some simplified design theory and zonal experience for predicting the bearing capacity of pile under the seismic loading, obvious deficiencies can be found easily in aseismic design method of pile foundation in liquefiable site used at present. Analytical method and indoor experimental for soft soil improved by gravel pile, are two types of settlement computation methods that used widely, however most Research workers often choose one, nevertheless, many valuable material that hard to meet the need of engineering practice has been collected.
     Based on the review of past research work from domestic or foreign and the system's summary to predecessor's results, many useful material got collected before we starting the research which supported by Province Natural Science Foundation of Shanxi in China " The experiment study of joint actiom of pile and soil under the seismic load ".In the paper, indoors experiment about the low cap pile foundation in the liquefiable soils under earthquake action is stimulated completing by the Three-Dimensional Finite Elements Method Program "midas-GTS"(Geotechnical and Tunnel System) through these macroscopic mechanics parameter that obtains from the experiment's data. Under the same earthquake wave action, to investigate the seismic responses of the bearing capacity of pile foundation with different pile spacing, and with thickness changing of the cap when considering the resistance of the soil liquefaction capacity. Moreover, to compare the working characteristic of piles in different positions during the earthquake. And the results are reached as shown in the following:
     1) Under the earthquake load, the The smaller the pile spacing, the stronger ability of liquefaction of the pile foundation, at the same time, the pile foundation also slowed down the speed of pore-water pressure dissipation in original location;
     2) When the number of the piles to be invariable with different pile spacing, the mainly factor to enhances the capacity of the pile foundation is size of cap rather than the pile spacing under the static load;
     3) Although the smaller pile spacing provided the more sufficient space to improve the aseismic ability of pile foundation, it is the fact that the capacity is losing gradually follow shaking load continuing during the earthquake, just the smaller losing slowly;
     4) In the pile foundation with low cap, the plate to be thicker, it's earthquake resistance performance is more obvious during the earthquake than the same one under the static load. The thicker of the piles'cop, the stronger stiffness to improve the capacity of the resistance liquefaction;
     5) According to the different position in the pile foundation with low cap, the piles could be divided into three kinds:central pile, pile in the most distant place and pile in edge. They show different feature that the aseismic ability of the central pile is strongest than other two, and the pile in edge is next,through the careful contrast of those curves of the Acp got from the numeric model;
     6) In the process, the earthquake response of the piles in the edge are different, the aseismic ability of those to meet the seism's wave came is stronger than others'.
引文
[1]胡聿贤.地震工程学[M].北京:地震出版社,1988.08:4-40.
    [2]陈国兴.岩土地震工程学[M].北京:科学出版社,2007-08-01:9-51.
    [3]桂立平.入世中国建筑业面临的机遇与挑战[M].北京:中国经济出版社,2001:16-31.
    [4]左名麒,胡人礼,毛洪渊.桩基础工程(设计/施工/检测)[M].北京:中国铁道出版社,1996:5-36.
    [5]Lok. M. Numerical Modeling of Seismic Soil-Pile-Structure Interaction in Soft Clay [D]. University of California, Berkeley,1999.
    [6]地基基础震害调查与抗震分析[R].北京:国家建委建筑科学研究院地基基础研究所,2009.
    [7]栾茂田,林皋,杨庆.岩土地震工程与土动力学中若干最新进展评述[D].土动力学理论与实践[C],大连:大连理工大学,1998,19-47.
    [8]Reese L C, Cox W R, Koop F D.Analysis of laterally loaded piles in sand [C] Proceedings of OTDBZ1080,1974:473 - 483.
    [9]韩英才,Novak. M水平荷载作用下单桩的动力分析[[J].地震工程与工程振动,1989(6):95-109.
    [10]韩英才,Novak. M.水平荷载作用下群桩动力特性的研究[J].土木工程学报,1992(10):23-32.
    [11]徐筱在,阎兴华,史玉良.桩基水平振动的特性.地基与工业建筑抗震[M].北京:地震出版社,1984.
    [12]Imamura. A, Hijikata. K. An experimental study on nonlinear pile—soil interaction based on forced vibration tests of a single pile and a pile group[C]. USA: Proceedings of 11th World Conference Earthquake Engineering,1996, Paper No.156.
    [13]Kagawa. T, Kraft. L. Seismic P-Y responses of flexible pile [M].Journal of Geotechnical Engineering, ASCE,1980.
    [14]Liu H, Chen K. Test on behavior of pile foundation in liquefiable soils [C]. Proceedings of 2nd International Conference on Recent Advances in Geotechnical Engineering and Soil Dynamics. St. Louics,1991.
    [15]李雨润.液化土层中桩基础横向动力响应研究[D].哈尔滨:中国地震局,2006.
    [16]Wilson D. W. Observed seismic lateral resistance of liquefying sand [C]. Journalof GGE.2000.
    [17]汪明武.强震条件下的桩土相互作用动态土工离心试验研究[C].岩石力学与工程学报,2005,24(S2-5):555-560.
    [18]R Clough. R Woodward. Analysis of Embankment Stresses and Deformations [C].
    Journal of Geotechnical and Geoenvironmental Engineering.1996,122(7):578584
    [19]0. C. Zienkiewicz, R. L. Taylor. The Finite Element Method [M].Britian: Published by Elsevier Ltd,2006
    [20]俞载道.结构动力学基础[M].上海:上海科学技术出版社.62-172.
    [21]茜平一,陈晓平.桩-承台-土共同作用的三维有限元分析[C].工程勘察,1999,(06).
    [22]陈清军,楼梦麟.群桩基础二维非线性地震反应分析[C].振动与冲击.2003,Vol.22,NO:3:98-102.
    [23]王成雷.液化土层桩基和砂土相互作用的P-Y曲线[C].岩土工程学报.2007:6:45-49.
    [24]牛琪瑛,张明.碎石桩复合地基抗液化性能的数值分析[D].山西:太原理工大学,2010.
    [25]黄雨,舒翔等.桩基础抗震研究的现状[M].沈阳:工业建筑,2002:6-53.
    [26]瓦尔夫(Wolf, J.P.)著;吴世明等译[M].土-结构动力相互作用.北京:地震出版社,1989.12:72-103.
    [27]谢定义.土动力学[M].北京:高等教育出版社,1988:56-108.
    [28]费涵昌,吴一伟等.砂土液化对桩基础的影响[C].上海:同济大学学报,1995:360-364.
    [29]Cadagrande A. Liquefaction and cyclic deformation of sands,a critical review[C]. Argentina:Proceedings of 5th Pan-American conference on Soil Mechanics, 1975.
    [30]midas-GTS岩土工程分析理论手册[M].北京:迈达斯信息技术有限公司,2006:8-73.
    [31]龚晓南.高等土力学[M].浙江:浙江大学出版社,1996.08:92-129.
    [32]谢康,周健.岩土工程有限元分析理论与应用[M].北京:科学出版社,2002.05.
    [33]朱百里,沈珠江等编著.计算土力学[M].上海:上海科学技术出版社.72-109.
    [34]王勖成.有限单元法[M].北京:清华大学出版社,2003:468-520.
    [35]夏雪娇.考虑桩一土一结构的相作用的结构动力数值分析研究[D].大连:大连理工大学,2008.
    [36]刘保县,李旭.地震作用下桩-土-上不结构作用机理及数值模拟[D].陕西:西华大学,2009.
    [37]郑颖人,沈珠江,龚晓南.岩土塑性力学原理[M].北京:中国建筑工业出版社,2002.
    [38]连章华.现代CAE技术[M].北京:石油工业出版社,2004.12:5-35.
    [39]杨桂通.土动力学[M].北京:中国建材工业出版社,2000:21-49.
    [40]SHEN zhu-jiang. Sructural model for sand liquefaction under complex loading [C]. proceedings of the 5th National Conference on soil dynamics. Dalian:Dalian University of Technology,998.
    [41]童朝霞,张建民,张嘎.考虑应力主轴循环旋转效应的砂土弹塑性本构模型[C].武汉:岩石力学与工程学报,2009.28.
    [42]张克绪,李明宰,王治琨.基于非曼辛准则的土动弹塑性模型[C].地震工程与工程振动,1997.17-2.
    [43]Akira.A, Noda. T, Yamada. E, et al. An elasto-plastic description of two distinct volume change mechanisms of soils [C]. Soils and Foundation,2002,42(5).
    [44]Deeks. A. J, M. F. Randolph. Axisvmmetrie time-domain transmitting boundaries [C]. Jonrnal of Engineering Mechanies,1991.1-25.
    [45]肖晓春.地震作用下土—桩—结构动力相互作用的数值模拟[D].大连:大连理工大学,2003.
    [46]中国建筑科学研究院.建筑抗震设计规范[S].北京:建筑工业出版社.2010.25-63.
    [47]Pietrzak G,Curnier A. Large deformation frictional contact mechanics: continuum formulation and augmented Lagrangian treatment [C]. Comput Meth Appl Mech Engng.1999,177:351-381
    [48]徐彬,陈南,王辉等.基于接触单元法的复杂机构有限元分析[C].南京:东南大学学报(自然科学版),2009.3-39.
    [49]刘红军.黄河三角洲地基土地震液化试验研究与数值模拟[D].山东:中国海洋大学,2004.
    [50]唐亮.液化场地桩-土动力相互作用p-y曲线模型研究[D].哈尔滨:哈尔滨工业大学,2010.
    [51]朱以文,蔡元奇,徐晗Abaqus与岩土工程分析[M].上海:中国图书出版社,2005,6-73.
    [52]夏栋舟,何益斌,刘建华.土-结构动力相互作用体系阻尼及地震反应分析[C].岩土力学,2009:10-30.
    [53]Funahara H, Fujii S, Tamura S. Numerical Simula-tion of Pile Failure in Liquefied Soil Observed inLarge-scale Shaking Table Test [A]. Proc.12thWorld Conf. Earthquake Engineering[C],2000:927-936
    [54]孔德森,李纯洁,凌贤长等.液化场地群桩-土-结构地震相互作用振动台试验研究[C].岩土工程学报.2011,2-33.
    [55]贺武斌,贾军刚,白晓红等.承台—群桩—土共同作用的试验研究[C].岩土工程学报,6-24.
    [56]钱德岭,张文彦,曹光暄等.基于GTS对单桩静压试验的有限元数值模拟分析[C]。安徽:合肥工业大学学报(自然科学版),2009,2-32.
    [57]谢征勋.建筑工程事故分析及方案论证[M].北京:地震工程出版社,1996:75-93.
    [58]工程地质手册[S].北京:中国建筑工业出版社,2006.
    [59]中国建筑科学研究院.建筑桩基础技术规范[S].北京:建筑工业出社.2010.45-72.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700