用户名: 密码: 验证码:
形态/材料二元耦合仿生功能表面增效节能机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水泵是人类应用最广泛的通用机械之一,与人类工农业生产及日常生活息息相关,但其效率低,耗电量大等问题仍然比较突出。传统的提高水泵效率的方法有抽级改造法,改造或更换叶轮法,仿鲨鱼皮riblet表皮法,叶轮流道中加陶瓷法,叶轮表面图憎水涂料法,但都有其局限性。
     研究表明,水生生物在流体介质运动中,皮肤弹性可根据流体载荷发生动态变化,并与皮下组织特有的非光滑结构形成动态耦合表面,并具有特定的减阻功能。这种通过体表与流体介质互动而实现形态/表面弹性二因素动态耦合称为形态/材料二元动态耦合。本文受上述现象启发,在仿生耦合理论的指导下,依据仿生学相似原理,构建形态/材料二元动态耦合仿生功能表面;该功能表面由不同属性的双层材料构成,利用表面膜材料的弹性变形以及表面膜材料与基底材料表面上仿生非光滑结构的动态耦合,对流体介质进行主动控制,从而实现减阻功能;并以典型流体介质中工作的机械部件-泵为研究载体,以增效、减阻为研究目标,采用试验优化设计方法优化二元动态耦合仿生功能表面结构参数;通过流固耦合模拟技术探索动态耦合仿生功能表面增效节能机理,为获取“低能耗、高效率”的耦合仿生功能表面设计制造理论体系奠定基础,为实现流体机械部件在较为宽泛的工况下的减阻、增效问题提供新方法。为此,本文主要从以下几个方面进行了研究并得到以下结论:
     1.完善了耦合仿生功能表面的设计与制造工艺
     利用中间介质,采用一次铸造成型法,完成了形态因素在基底材料也就是水泵叶轮复杂流道表面上的加工工艺研究,实现了基底材料仿生非光滑结构的加工。一次铸造成型法尤其适用于复杂不规则曲面加工非光滑表面。
     采用旋转涂覆工艺方法,将聚氨酯材料涂覆于加工有非光滑结构的基底材料上,形成具有一定弹性的形态/材料二元耦合仿生功能表面。
     2.形态/材料二元耦合仿生功能表面流固耦合模拟及机理分析
     以水泵为载体,以提高水泵效率为目标,对设计的形态/材料二元动态耦合仿生功能表面进行了优化设计试验。试验表明,动态耦合仿生功能表面在水泵叶轮上的布置位置对水泵的效率影响显著;仿生耦合水泵效率提高显著,其效率曲线变得丰满平顺,也就是说,即使仿生耦合水泵运行偏离最大效率点,仍然可以在较高的效率范围内运行;优化后的仿生耦合水泵效率提高可达5%及以上,与单因素仿生非光滑水泵相比,仿生耦合水泵在整个流量段内的增效节能性能稳定、显著。
     3.形态/材料二元耦合仿生功能表面减阻机理研究
     从流固耦合数值模拟的角度,进行耦合仿生功能表面-流体介质作用机理的初探研究。得出其增效节能机理为:流体在较低的流速下,由于聚氨酯弹性涂层的存在,在负高压时产生弹性变形,吸收了部分能量,并在负高压峰值后又释放这部分能量,称为缓释效应,这种效应可以有效的减小能量损失,从而提高水泵效率;在流速较高,流量较大的情况下,水流强烈冲击耦合叶片时,变形后的耦合水泵叶轮表面处于完全耦合状态,其叶片表面表现为非光滑结构而吸收部分叶轮流道内部的紊流能量,对横向和纵向的湍流猝发都有抑制,起到稳定紊流、推迟转捩的作用,达到增效节能的目的。
The pump is one of the most widely used general machinery to the human. It isclosely bounded up with human industrial and agricultural production, but it still hassome problems, such as low efficiency, large power consumption. The traditionalmethods of improving the efficiency of water pump are pumping level transformation,modification or replacement of the impeller, riblet method of imitation shark skinepidermis, impeller passage with ceramics and other methods, the surface of theimpeller of hydrophobic coating method and so on, but each of them has its ownlimitations.
     Using the surface membrane materials elastic deformation, using surfacemembrane material and on the surface of the base material of bionic non-smoothstructure dynamics the coupling actively control of the fluid medium, to reduce dragfunction; and the pump that is a typical fluid medium of the work of the mechanicalcomponents is taken as the carrier, with synergistic, drag reduction as the researchobject, using experimental design optimization of Binary of dynamic coupling bionicfunctional surface structure parameters; explores the dynamic coupling bionic functionsurface drag reduction mechanism by fluid-solid coupling technique, in order to obtainthe “low consumption, high efficiency” coupling bionic functional surface design andmanufacture system lays a foundation for the realization of this theory, to provide newmethods for machinery components in more general condition of drag reduction,synergism problem. Therefore, this article were mainly studied from the followingaspects and obtained the corresponding conclusions:
     First, perfected the design and manufacturing process of coupling bionicfunctional surface. The use of intermediate medium by using a casting molding method,completed the processing technology research of Shape factors in the substratematerial which is complicated by flow channel on the surface of the pump impeller,realized the processing of the basal material of bionic non-smooth structure. A castingmolding method is especially suitable for the complex and irregular surface machiningnon-smooth surface.
     Using spin coating process, the polyurethane material was coated on the substratematerial with non-smooth structures, forming morphology/material coupling bionicfunctional surface with certain elasticity.
     Second, morphological/material two element coupling bionic functional surfacefluid solid coupling simulation and mechanism analysis. Using water as the carrier, inorder to improve the pump efficiency as the goal, to design the shape of two Binary ofmorphological/material dynamic coupling bionic functional surface were optimized bydesigning experiments. Experiments show that, the dynamic coupling bionic functionalsurface in water pump impeller arrangement significantly influenced and improved thepump efficiency; the efficiency curves of plump was smoothed, that is to say, even ifthe bionic coupling pump running deviation from the point of maximum efficiency, itstill can be in the high efficiency range operation; optimized bionic coupling pumpefficiency can reach5%and above, compared with the single factor of bionicnon-smooth water pump, bionic coupling pump can enhance the efficiencyperformance and save energy more significantly and stable in the whole flow period.
     Third, morphological/material two elements coupling bionic functional surfacedrag reduction mechanism research.
     From the aspect of fluid-solid coupling numerical simulation, coupling bionicfunctional surface fluid medium action mechanism was studied. The energy savingmechanism for: fluid at low flow rates, due to the existence of polyurethane elasticcoatings, in the negative pressure generated elastic deformation, absorb a portion ofenergy, and release this energy in the negative pressure peak, which is called therelease effect can effectively reduce the energy loss, thereby improving the waterpump efficiency; in the higher flow velocity, the larger flow volume conditions, waterflow strongly impact coupled blades, deformed coupling pump impeller surface is in afully coupled state, the blade surface ceased to be smooth structure and absorbing aportion of the flow passage of impeller internal turbulent energy, inhibited thehorizontal and vertical turbulent burst, stabilized turbulence and delayed transition,which raised the production efficiency.
引文
[1].兰才有,仪修堂,薛桂宁等.我国喷灌设备的研发现状及发展方向[J].排灌机械,2005,23(1):1-6.
    [2].2009年中国泵业行业研究报告[M/OL].来源网址:http://www.baogaobaogao.com/2009-08/2009bengyeyanjiuBaoGao/.
    [3].王志高,何成连.减阻是水泵节能的有效措施[J].水泵技术,2008,(1):37-41.
    [4]. Vaidyanathan K, Gell M, Jordan E. Mechanisms of spallation of electron bearn physicalvapor deposited thermal barrier coatings with and without platinum aluminide bond coatridges[J]. Surf Coat Techn,2000,28,133-134.
    [5].罗爱梅,蔺存国,王利,张桂玲.鲨鱼表皮的微观形貌观察及其防污能力研究[J].海洋环境科学,2009,12,28(6):718-718.
    [6].田伟.激光仿生耦合非光滑表面模具与制件粘附机理的研究[D].长春:吉林大学,2008.
    [7].许永辉,张锋,张洪志,闫海鹏,郭铭.舰用防污涂料现状及发展趋势[J].现代涂料与涂装,2008,7,11(7):59-60.
    [8].邵静静,蔺存国,张金伟,张桂林.鲨鱼皮仿生防污研究[J].涂料工业,2008,10,38(10):39-44.
    [9].任露泉.地面机械脱附减阻仿生研究进展[J].中国科学E辑:技术科学,2008,38(9):1353-1364.
    [10].袁寿其,王新坤.我国排灌机械的研究现状与展望[J].农业机械学报,2008,10,39(10):52-57.
    [11].范宗霖,张翼飞,陈金海.我国泵行业的现状与未来思考[J].水泵技术,2007(1):32-32,47-48.
    [12].付绍刚.离心泵常见故障原因及处理方法[J].中国新技术产品,2010,10,123-123.
    [13].邵国辉,赖喜德,孙见波.水泵节能的技术途径[J].中国水利,2008(4):67-68.
    [14].王福军,黎耀军,王文娥等.水泵CFD应用中的若干问题与思考[J].排灌机械,2005,23(5):1-10. Wang Fujun, Li Yaojun, Wang Wene, et al. Analysis on CFD application inwater pumps[J]. Drainage and Irrigation Machinery,2005,23(5):1-10(in Chinese).
    [15].施卫东,沈永娟,王准等.高效无堵塞泵的研究现状与发展趋势[J].农机化研究,2007(4):157-159.
    [16].侯光耀,李满华,丁为甫等.流道式无堵塞泵的研究及离心泵水力设计概述[J].山东农机,2004(7):9-10.
    [17].袁寿其,刘厚林.泵类流体机械研究进展与展望[J].排灌机械,2007,11,25(6):46-51.
    [18].任露泉,陈庆海,田丽梅,刘庆平.一种与流体相接触的仿生弹性壁表面:中国,200810051510.6[P].2009-6-17.
    [19]. Vincent J F V, Mann D L. Systematic technology transfer from biology to engineering[J].Philosophical Transactions of the Royal Society,2002,360(1791):159-179.
    [20]. Tong Jin, Ren Luquan. Geometrical morphology chemical constitution and wettability ofbody surfaces of soil animals[J]. Agricultural Engineering Journal,1994,3(1&2):59-68.
    [21].孙毅.仿生学的发展现状与未来[J].科技信息,1997,(8):8-9.
    [22].孙毅.仿生学研究的若干重要进展[J].科技情报开发与经济,2010,20(3):163-164.
    [23]. AMES F, SCHUMACHER, MICHELL E L, et al. Engineered antifouling microtomo-graphies effect of feature size, geometry, and roughnees on settlement of zoospores of thegreen alga ulva[J]. biofouling,2007,23(1):55-62.
    [24].任露泉,杨卓娟,韩志武.生物非光滑耐磨表面仿生应用研究展望[J].农业机械学报,2005,36(7):144-147.
    [25]. Weidong Zhou, Zhimei Zhao, T. S. Lee, Investigation of flow through centrifugal pumpimpellers using computational fluid dynamics[J]. International Journal of RotatingMachinery,2003,9(1):49-61.
    [26].唐学林,陈稚聪,吴玉林,离心泵叶轮内部清水湍流的动态大涡模拟[J].清华大学学报(自然科学版),2004,44(9):1234-1234.
    [27].钱健,刘超,汤方平.离心泵叶轮内部三维紊流数值模拟与验证[J].农业机械学报,2005,36(1):32-34.
    [28].黄思,吴玉林.离心泵内三维流场非对称性及泵受力的数值分析[J].流体机械,2006,34(2):30-33.
    [29].耿少娟,聂超群,黄伟光.不同叶轮形式下离心泵整机非定常流场的数值[J].研究机械工程学报,2006,42(5):27-31.
    [30].唐辉,何枫.离心泵内流场的数值模拟[J].水泵技术,2002,(3):3-9.
    [31]. ShiF, TsukamotoH. Numerical study of pressure fluctuations caused by impeller diffuserinteraction in a diffuser pump stage[J]. Journal of Fluids Engineering, Transactions of theASME,2001,123(9):466-474.
    [32]. Gonzalez J, Fernandez J, Blanco E, et al. Numerical simulation of the dynamic effects dueto impeller volute interaction in a centrifugal pump[C]. Journal of Fluids Engineering,Transactions of the ASME,2002,124(6):348-355.
    [33]. Goto A, Nohmi M, Sakurai T, et al. Hydrodynamic design system for pumps based on3DCAD, CFD, and inverse design method[J]. Journal of Fluids Engineering, Transactions ofthe ASME,2002,124(2):329-335.
    [34].田伟.激光仿生耦合非光滑表面模具与制件粘附机理的研究[D].长春:吉林大学,2008.
    [35].孙少明,任露泉,徐成宇.长耳鸮皮肤和覆羽耦合吸声降噪特性研究[J]..噪声与振动控制.2008,6,(3):119-123.
    [36].周志雄,孙宗禹,郭力等译.1998美国制造业挑战展望委员会.2020年制造业挑战和展望[M].美国:国家学术出版社.
    [37].张成春,任露泉,王晶,张永智.旋成体仿生凹坑表面流场控制减阻仿真分析[J].兵工学报,2009,8,30(8):1066-1072.
    [38].刘博,姜鹏,李旭朝,桂泰江,田黎,秦松.鲨鱼盾鳞肋条结构的减阻仿生研究进展[J].材料导报,2008,7,22(7):14-21.
    [39].任露泉.地面机械脱附减阻仿生研究进展[J].中国科学E辑:技术科学,2008,38(9):1353-1364.
    [40]. Kuklinski R, Henoch C, Castano J. Experimental study of ventilated cavities on dynamictest model[J]. In: Christopher E B, ed.4th International Symposium on Cavitation,California,2001-06-20~23. California: California Institute of Technology Pasadena,2001,Session B3.004.
    [41]. WANG G, Senocak I, Shyy W. Dynamics of attached turbulent caviting flows[J]. Progressin Aerospace Sciences,2001,37:551-581.
    [42]. Vaidyanathan R, Senocak I. Sensitivity evaluation of a transport based turbulent cavitationmodel[J]. Journal of Fluids Engineering,2003,125:447-458.
    [43]. PASSIVE AND ACTIVE FLOW CONTROL BY SWIMMING FISHES ANDMAMMALS Annual Review of Fluid Mechanics[J]. Volume38, Page193-224, Jan2006.
    [44]. Miklosovic D.S, Murray M.M, Howle L.E, Fish F.E. Leading edge tubercles delay stall onhumpback whale (Megaptera novaeangliae) flippers, Phys. Fluids[J].2004,(16):39-42.
    [45].李光吉,蒲侠,雷朝媛,苏炳煌,鲁毅.具有非光滑表面的仿生减阻材料的研究简介[J].材料研究与应用,2008,12,2(4):455-459.
    [46].吴明康.仿鲨鱼皮泳衣技术的发展与应用前景[J].纺织科技进展,2009,(2),90-98.
    [47].彭衍磊,蔺存国,王利.鲨鱼表皮微观形貌及防污性能研究[J].涂料工业,2009,12,39(12):40-43.
    [48].洪峰,赵中华,桂泰江,仿生防污涂料的发展概况[J].现代涂料与涂装,2002,5:7211.
    [49]. CARMANM L, ESTES T G. Engineered antifouling microtomographies correlatingwettability with cell attachment[J]. Biofouling,2006,22:11-21.
    [50]. SCHUMACHER J F, CARMANM L, ESTES T G. Engineered antifouling microtomo-graphies effect of feature size, geometry and roughness on settlement of zoospores of thegreen alga Ulva[J]. Biofouling,2007,23(1):55-62.
    [51].梁在潮,梁利.肋条减阻[J].水动力学研究与进展,1999,14(3):303-311.
    [52]. D W BECHERT, M BRUSE, W HAGE, et a1. Fluid Mechanics of Biological Surfaces andtheir Technological Application[J]. Naturwissenchaften.2000,87(4):157-171.
    [53].田丽梅,任露泉,韩志武,施卫平,丛茜.仿生非光滑表面脱附与减阻技术在工程上的应用[J].农业机械学报,2005,36(3):138-142.
    [54].杨晓东.生物柔性减阻防粘机理与柔性仿生技术研究[D].长春:吉林大学,2002.
    [55].王再,张春香,刘伟哲.仿生非光滑耐磨表面形态的激光加工研究[J].矿上机械,2010,38(4):24-23.
    [56]. Walsh M J, Weinstein L M. Drag and heat transfer on surfaces with small longitudinalfins[J]. AIAA Paper,1978,78:1161.
    [57]. Walsh M J. Turbutent boundary layer drag reduction using riblets[J]. AIAA Paper,1982,82:1.
    [58]. FANG Yan, SUN Gang, WANG Tongqing, et al. Hydrophobicity mechanism ofnonsmooth pattern on surface of butterfly wing[J]. Chinese Science Bulletin,2007,52(5):711-716.
    [59]. Barthlott W, Neinhuis C. Purity of the sacred lotus, or escape from contamination inbiological surfaces[J]. Planta,1997,202(1):1-8.
    [60].李光吉,蒲侠,雷朝媛,苏炳煌,鲁毅.具有非光滑表面的仿生减阻材料的研究简介[J].材料研究与应用,2008,12,2(4):455-459.
    [61].吴明康.仿鲨鱼皮泳衣技术的发展与应用前景[J].纺织科技进展,2009,(2),90-98.
    [62].美国研制成功舰艇防污仿生环保涂层[J].表面工程资讯.2005,5(2):30-30.
    [63]. MICHELL E L, CARMAN, THOMAS G, et al. Engineered antifouling microtomographiescorrelating wettability with cell attachment[J]. biofouling,2006,22(1):1-11.
    [64]. JAMES F, SCHUMACHER, MICHELL E L, et al. Engineered antifouling microtomo-graphies effect of feature size, geometry, and roughnees on settlement of zoospores of thegreen alga ulva[J]. biofouling,2007,23(1):55-62.
    [65].任露泉,佟金,李建桥,陈秉聪.生物脱附与机械仿生—多学科交叉新技术领域[J].中国机械工程,1999,9,10(9):984-986.
    [66].孙久荣,程红,丛茜.蜣螂减粘脱附的仿生学研究[J].生物物理学,2001,17(4):785-793.
    [67].李建桥,任露泉,刘朝宗等.减粘降阻仿生犁壁的研究[J].农业机械学报,1996,27(2):1-4.
    [68]. Luquan Ren, Shiqiao Deng, Jingchun Wang, Zhiwu Han. Design Principles of theNonsmooth Surface of Bionic Plow Moldboard[J]. Journal of Bionics Engineering (2004)Vo l.1, No.1,9-17.
    [69]. Renluquan, Hanzhiwu, Lijianqiao, Tongjin. The effects of non-smooth characteristics onbionic bulldozer blade in resistance reduction against soil[J]. Proceedings8th Europeanconference of ISTVS. Umea:9-16.
    [70].任露泉,陈德兴.仿生推土板减粘降阻机理初探[J].农业工程学报,1990,6(2):13-20.
    [71].丛茜,王连成,任露泉,李安琪.波纹型非光滑仿生推土板减粘降阻的试验研究[J].建筑机械,1996,36(3):28-30.
    [72].韩志武,任露泉,李建桥.生物非光滑降阻效应模型推土铲实验研究[C].全国地面机械系统学会第十一届学术年会.2002,12,14-17:1-6.
    [73].杨晓东,任露泉.生物柔性运动特征与柔性仿减阻实现技术[C].全国地面机械系统学会第十一届学术年会.2002,12,14-17:7-11.
    [74].杨晓东,任露泉.仿生柔性减阻系统模型与实验研究[J].中国机械工程,2001,12(8):951-954.
    [75].任露泉,王云鹏,李建桥,佟金.土壤动物柔性非光滑体表及其防粘降阻特性[J].科学通报,1997,42(17):1887-1889.
    [76].路甬祥.21世纪中国制造业面临的挑战与机遇[C].中国机械工程学会会讯,2004,11:1-14.
    [77].任露泉,张成春,田丽梅.仿生非光滑用于旋成体减阻的试验研究[J].吉林大学学报(工学版),2005,35(4):431-436.
    [78].彭宗尧.离心式水泵仿生非光滑增效研究[D].长春:吉林大学,2006.
    [79].韩鑫,张德远.鲨鱼皮复制工艺研究[J].中国科学E辑:技术科学,2008,38(1):9-15.
    [80].韩鑫,张德远.生物体表形貌直接复制制备仿生功能表面研究[C].中国农业机械学会2008年学术年会论文集,479-482.
    [81].张德远,蔡军,李翔,姜兴刚,韩鑫,陈博.仿生制造的生物成形方法[J].机械工程学报,2010,3,46(5):88-92.
    [82].张赫男,李翔,陈博,张德远.仿鲨鱼体表结构的生物非光滑减阻表面制造[C].2005年中国机械工程学会年会论文集,2005,11:1-5.
    [83].韩鑫,张德远,李翔,李元月.大面积鲨鱼皮复制制备仿生减阻表面研究[J].科学通报,2008,53(7):838-842.
    [84].任露泉,梁云虹.耦合仿生学[M].北京:科学出版社,2012.
    [85]. Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction of terrainmachines[J]. Sci China Ser E-Tech Sci,2009,52(2):273-284.
    [86].任露泉.地面机械脱附减阻仿生研究进展[J].中国科学E辑:技术科学,2008,38(9):1353-1364.
    [87]. Paton R. Process, Structure and context in relation to integrative biology [J]. Biosystems,2002,64:63-72.
    [88].任露泉,梁云虹.生物耦合功能特性及其实现模式[J].中国科学E辑:技术科学,2010,40(3):223-230.
    [89].任露泉,梁云虹.生物耦合及其分类学与特征规律研究[J].中国科学E辑:技术科学,2010,40(1):5-13.
    [90].任露泉,彭宗尧,陈庆海,赵国如,王涛杰.离心式水泵仿生非光滑表面增效的实验研究[J].吉林大学学报(工学版),2007,5,37(3),575-581.
    [91]. Ren Luquan, Tong Jin, Zhang Shujun. Reducing sliding resistance of soil againstbulldozing plates by unsmoothed bionic surface[J]. Journal of Terramechanics,1995,32(6):303-309.
    [92]. Ren Luquan, Li Jianqiao, Chen Bingcong. Unsmoothed surface on reducing resistance bybionics[J]. Chinese Science Bulletin.1995,40(13):1077-1080.
    [93]. Ren L Q. Progress in the bionic study on anti-adhesion and resistance reduction of terrainmachines[J]. Sci China Ser E-Tech Sci,2009,52(2):273-284.
    [94]. Ren L Q, Liang Y H. Biological couplings: classification and characteristic rules[J]. SciChina Ser E-Tech Sci,2009,52(10):2791-2800.
    [95]. Lu Y X. Significance and progress of bionics[J]. Journal of Bionic Engineering,2004,1(1):1-3.
    [96].任露泉,佟金,李建桥等.松软地面机械仿生理论与技术[J].农业机械学报,2000,31(1):5-9. Ren Lu-quan, Tong Jin, Li Jian-qiao, et al Biomimetics of machinery for softterrain[J]. Transactions of the Chinese Society for Agricultural,2000,31(1):5-9.
    [97].任露泉,梁云虹.生物耦元及其耦联方式[J].吉林大学学报(工学版),2009,11,39(6):1504-1511.
    [98].田丽梅,陈庆海,任露泉,卜兆国,廖庚华,李文渊.一种离心式仿生耦合泵:中国,201120002982.X[P].2011-07-27.
    [99].任露泉,田丽梅,陈庆海,卜兆国,廖庚华,李文渊.一种离心式仿生耦合泵:中国,201010586526.4[P].2011-03-09.
    [100].田丽梅,卜兆国,陈庆海,李文渊,李新红.肋条状仿生非光滑表面铸造成型方法[J].农业工程学报,2011,27(8):189-194. Tian Limei, Bu Zhaoguo, Chen Qinghai, et al.Casting method of rib-like bionic non-smooth surface[J]. Transactions of the CSAE,2011,27(8):189-194.
    [101].田丽梅,任露泉,彭宗尧.仿生非光滑离心式水泵增效节能特性数值模拟[C].中国农业机械学会2008年学术年会论文集,2008,341-345.
    [102].叶梅.聚氨醋弹性体复合材料的制备及结构性能研究[D].苏州:苏州大学,2006.
    [103]. Limei TIAN, Qinghai CHEN, Luquan REN, Sheng CHEN, Zhaoguo BU. Experimentalstudy on efficiency enhancement of centrifugal Water pump by bionic coupling elasticitywall[C]. The1st international symposium on biomimetic functional surfaces with fluidsinteractions.(Biomimetic-FSFI’09,14-15September2009, Nottingham, UK).
    [104].田丽梅,陈庆海,任露泉,卜兆国,韩志武,李文渊.铸件仿生非光滑表面的形成方法:中国,201010612411.8[P].2011-07-20.
    [105].任露泉,陈庆海,田丽梅,刘庆平.一种与流体相接触的仿生弹性壁表面:中国,200810051510.6[P].2009-06-17.
    [106].钱若军,董石麟,袁行飞.流固耦合理论研究进展[J].空间结构,2008,3,14(1):3-15.
    [107].陈池,袁寿其,金树德.离心泵叶轮内流计算方法综述[J].流体机械,1999,2,27(2):35-39.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700