用户名: 密码: 验证码:
微细电解加工装备研制及其实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微细电解加工加工是一种以离子方式去除材料的特种加工方式,具有加工精度高、工具无损耗、无残余应力变形存在以及与零件硬度无关等显著优点。因此,从理论上来说,微细电解加工和现在的数控技术等相结合,可以实现微细结构的高精度加工。
     本文自行研制开发了微细电解加工装备。考虑到和其他功能的复合以及装备刚性要求,整体结构采用“C”型结构,并与立柱旋转平台结构相结合。旋转平台采用防腐性能好的大理石材料制作;应用定制的隔振平台来隔离台基的振动,防止对加工造成影响:选用带光栅尺反馈系统的精密直线位移滑台进行快速接近进给,PI精密三位移平台实现对刀和加工时的精密进给。该装备的精密进给运动范围为100×100×10mm,Z向快速运动范围为0-400mm,进给机构的重复定位精度为1μm;主轴采用伺服电机驱动,调速范围为0-3000rpm,回转精度在1μm之内,且可以自动调节以补偿皮带的热蠕变。另外,在装备上设有高精度CCD镜头对加工状态进行实施检测。
     开发了相应的控制和检测系统,由运动控制卡和直线位移滑台结合实现快速运动,由运动控制卡和PI三位移平台结合实现精密进给运动,实现XYZ方向单独运动和两轴联动,用以进行微细电解加工;在人机交互界面上实时观测加工参数并可以进行设置;加工状态监测系统由霍尔电流传感器、A/D转换模块和数据采集卡构成,当检测电路检测到极间间隙加工异常时,反馈给工控机和运动机构进行回退。
     结合微细电解加工的特点,在装备上进行了相应的微细电解加工实验。分别对不同的加工电压、电解液、电解液浓度、占空比和电极形状等进行了试验和比较,经过分析研究,得出了以上各加工参数对微细电解加工效果的影响规律。另外,本文还以该装备为基础,结合有限元分析软件,分析在加工状态下工具电极周围的电场分布趋势,为用电解加工方法加工微细电极提供分析依据,并用微细电解加工方法在螺旋电极的基础上加工出了微细螺旋电极。应用微细圆柱电极和加工出的微细螺旋电极分别进行微细孔的加工实验,分别加工出不同的微结构,进一步通过对比验证了不同加工因素对加工效果的影响和机床的精度及稳定性。
Electrochemical micromachining (EMM) is a nontraditional machining method to remove material through metal ions, which has some advantages as higher processing accuracy, no wear of tool, no residual stress and deformation and no relation to the hardness of materials. Therefore, combining with CNC technology, it is easy to realize accurate processing on micro structure.
     In this paper, a setup, which can be used for the machining based on electro-chemical micromachining is designed and manufactured. In consideration of stiffness of setup and composition with other processing method, a "C" type structure is designed and selected. Rotating-platform is manufactured by marble material, which has the performance to resisting corrosion; Vibration-isolation platform is customized and can isolate the vibration of environment to impact the EMM process; macro scope feed is supplied by linear displacement slippery sets with feedback of light grid ruler, and micro scope feed is supplied by PI3-axis accurate feed platform; The range of accurate feed of the setup is100×100×10mm, and the range of macro scope of Z axis is0--400mm, the reposition accuracy of feed structure is1μm; The spindle is droved by servo motors and the range of rotary speed is0~3000rpm, and its rotation accuracy is below to2μm. Furthermore, this setup has the function to adjust the tensile force and creep automatically. In addition, the CCD scope fixed on the setup can detect the processing situation in real-time.
     The control system for the setup is developed. The rapid movement is controlled by motion card and linear displacement slippery sets, and accurate movement is controlled by motion card and PI3-axis accurate feed platform. Based on the two above facilities, rapid movement and accurate movement of EMM process can be realized easily, no matter single-axis and2-axis motion; The parameters of EMM can be set and observed by the human-computer interface in real-time; The detection circuit system of EMM processing situation is made up by holl current sensor. A/D transfer module and data acquisition card. When the feedback signal of EMM process is delected by detection circuit, it is delivered to IPC (industry personal computer), and combined with motion system to realize rollback operation.
     With the characteristic of EMM, some relevant experiments are made by using this setup. In these experiments, lots of influence elements are considered and some comparison and analysis are made, such as machining voltage, feed velocity, electrolyte and electrode shape, etc. After the study and analysis, some different results are discovered because of different machining parameters. Meanwhile, combined with this setup and finite element software, some experiments are made to simulate the electric field distribution of electrode under different machining parameters, which is used to provide experiment basement of EMM. By using electrochemical etching method, some micro cylinder electrodes and spiral electrodes are made. Finally, some micro structures are machining (such as micro holes) by micro cylinder electrodes and spiral electrodes, and some further comparisons are also been made.
引文
[1]徐家文,云乃璋,王建业,等.电化学加工技术——原理·工艺及应用[M].北京:国防工业出版社,2008.
    [2]M.Kock,V.Kirehner,R.Sehuster. Electroehemieal micromachining with ultra short voltage pulses_/a versatile method with lithographical precision[J]. Electrochimica Acta.2003,48(2003):3213-3219.
    [3]徐家文,王建业,田继安,等.21世纪电解加工的发展和应用[C].2001年中国机械工程学会年会暨第九届全国特种加工学术年会论文集.北京:机械工业出版社.2001:183-188.
    [4]徐惠宇.微细电解加工系统及其相关工艺的研究[D].南京:南京航空航天大学,2005.
    [5]章志义,赵晓东.国内外MEMS器件现状及发展趋势[J].电子工业专用设备.2002,31(4):200-206.
    [6]http://www.863.org.cn/863_105/applygide/200303070011.html.
    [7]孙立宁,周兆英,龚振邦.MEMS国内外发展状况及我国MEMS发展战略的思考[J].机器人技术及应用.2002,(1):2-4.
    [8]Kozak,J.,Rajurkar,K.P.,Makkar,Y.Study of Pulse Electrochemical Micromachin-ing[J]. Journal of Manufacturing Processes.2004,6(1):7-14.
    [9]http://www.cmf.rl.ac.uk/pdf/m4tech.pdf.
    [10]陈顺同.微CNC综合加工機研发与微元件裂造研究[D].台北:国立台湾大学,2005.
    [11]http://www.yole.fr/pagesAn/products/pd/MIS.pdf.
    [12]李文卓.微细电火花加工系统及其相关技术的研究[D].哈尔滨:哈尔滨工业大学,2002.
    [13]Wolfgang.Ehrfeld,Lehr,H.,Michel,F.,et al.Microelectro discharge machining as a technology in micromachining [C]. Micromachining and Microfabrication Process Technology Ⅱ. eds Stella W. Pang & Shih-Chia Chang) 1996:2879.
    [14]李文卓,刘加光,于云霞.微细电火花加工机床关键技术[J].机械工程学报.2007,43(001):170-175.
    [15]Masuzawa, T.,Takawashi, T. Recent trends in EDM/ECM technologies in Japan[J]. VDI BERICHTE.1998, (1405):1-16.
    [17]Beltrami, I.,Joseph, C.,Clavel, R.,et al. micro and nanoelectronic-discharge ma-chining[J]. Journal of Materials Processing Technology.2004, (149):263-265.
    [18]http://www.sarix.com/index_e.htm.
    [19]Quirk, M.,Serda, J. Semiconductor manufacturing technology[M].Prentice Hall, 2001.
    [20]Ruska,W. S.Microelectronic processing:An introduction to the manufacture of integrated circuits[M].New York:McGraw-Hill,1987.
    [21]"Semiconductor industry association, international technology roadmap for semiconductors"[J]. http://public.itrs.net.2003.
    [22]leong, M.,Doris, B.,Kedzierski, J.,et al. Silicon device scaling to the sub-10-nm regime[J]. Science.2004,306(5704):2057.
    [23]http://as.so.5ipatent.com/OverView.aspx.
    [24]Dario,P.,Carrozza,M.,Croce,N.,et al.Non-traditional technologies for microfab-rication[J]. Journal of Micromechanics and Microengineering.1995, (5):64-71.
    [25]Bhattacharyya,B.,Doloi,B.,Sridhar,P.S.,Electrochemical micromachining:New po-ssibilities for micro-manufacturing[C].5th Asia Pacific Conference on Materials Processing, June 25,2001-June 25,2001.1-3 edn 2001, (113):301-305.
    [26]Datta,M.,Landolt,D.Fundamental aspects and applications of electrochemical microfabrication[J].Electrochimica Acta.2000,45(15-16):2535-2558.
    [27]Datta, M.,Landolt, D. Electrochemical machining under pulsed current cond-itions[J]. Electrochimica Acta.1981,26(7):899-907.
    [28]王建业.高频窄脉冲电解加工的机理研究[J].华南理工大学学报:自然科学版.2002,30(001):6-11.
    [29]Rybalko, A.,Dikusar, A. Electrochemical machining with microsecond pulses[J]. Russian Journal of Electrochemistry.1994,30(4):443-450.
    [30]Kozak,J.,Rajurkar.K.P..Makkar.Y.Selected problems of micro electrochemical machining[J]. Journal of Materials Processing Technology.2004,149(1-3):426-431.
    [31]王建业.电解加工技术的新发展——高频窄脉冲电流电解加工[J].电加工1998,(02):37-41.
    [32]曾繁章.微细电解加工装备开发与实验研究[D].广州:广东工业大学,2006.
    [33]K., C. Possibilities of electrochemical micromachining[J]. International journal of the Japan Society for Precision Engineering.1998,32(1):37-38.
    [34]Schuster, R.,Kirchner, V.,Allongue, P.,et al. Electrochemical Micromachining[J]. Science.2000,289(5476):98-101.
    [35]张朝阳,毛卫平,陈飞.纳米、亚微米的超窄脉宽微细电化学加工[J].微纳电子技术.2009,46(11):684-690.
    [36]郝卫昭.纳秒脉冲微细电化学加工的工艺研究[D].上海:上海交通大学,2009.
    [37]王建业.脉冲电解加工技术在精微加工领域中的新发展[J].中国机械工程.2007,18(1).
    [38]Ehrfeld, W. Electrochemistry and microsystems[J]. Electrochimica Acta.2003, 48(20-22):2857-2868.
    [39]Trimmer, A. L.,Hudson, J. L.,Kock, M.,et al. Single-step electrochemical mach-ining of complex nanostructures with ultrashort voltage pulses[J]. Applied Physics Letters.2003,82(19):3327-3329.
    [40]Kim,B. H.,Na, C. W.,Lee, Y. S.,et al. Micro Electrochemical Machining of 3D Micro Structure Using Dilute Sulfuric Acid[J]. CIRP Annals-Manufacturing Technology.2005,54(1):191-194.
    [41]Wang, K.,Zhang, Z., A study on wire electrochemical micromachining for fabrication of microgrooves[C].2010 International Conference on Mechanic Automation and Control Engineering, MACE2010, June 26,2010 - June 28,2010. 2010:3271-3274. (IEEE Computer Society).
    [42]王昆,朱荻,张朝阳.微细电解线切割加工的基础研究[J].中国机械工程.2007,(07):833-837.
    [43]Zhu.D.,Wang,K.,Qu.N.S. Micro Wire Electrochemical Cutting by Using In Situ Fabricated Wire Electrode[J]. CIRP Annals-Manufacturing Technology.2007, 56(1):241-244.
    [44]王少华,朱获,曲宁松,等.微细缝结构电解加工研究[J].中国机械工程.2009,(08):965-970.
    [45]朱兵,朱荻,曾永彬,等.电解线切割加工技术试验研究[J].中国机械工程.2010,(08):963-967.
    [46]王昆.微细电解线切割加工技术的基础研究[D].南京:南京航空航天大学2007.
    [47]李英杰.基于电液束技术的电解微细加工工艺研究[D].西安:西安工业大学,2007.
    [48]傅军英,张明岐.电液束自动化加工监控技术[J].航空制造技术.2010,(07):78-80.
    [49]杨培剑.电液束加工微小凹坑阵列技术研究[D].南京:南京航空航天大学,2010.
    [50]杨培剑,曲宁松,刘壮,等.毛细管电极电液束加工微小凹坑试验研究[J].机械科学与技术.2010,(10):1291-1296.
    [51]纪峰.基于电液束技术的电解微细加工试验研究[D].西安:西安工业大学,2006.
    [52]Natsu, W.,Ikeda, T.,Kunieda, M. Generating complicated surface with electrolyte jet machining[J]. Precision Engineering.2007,31(1):33-39.
    [53]Bhattacharyya, B.,Malapati, M.,Munda, J. Experimental study on electrochemical micromachining[J].Journal of Materials Processing Technology.2005,169(Com-pendex):485-492.
    [54]Bhattacharyya, B.,Munda, J.,Malapati, M. Advancement in electrochemical micromachining[J]. International Journal of Machine Tools and Manufacture. 2004,44(15):1577-1589.
    [55]Kirchner, V.,Cagnon, L.,Schuster, R.,et al. Electrochemical machining of stainless steel microelements with ultrashort voltage pulses[J]. Applied Physics Letters. 2001,79(11):1721-1723.
    [56]王建业,徐家文.电解加工原理及应用[M].第一版.北京:l国防工业出版社,2001.
    [58]鲍怀谦,徐家文.基于超纯水电化学加工的扫描直写技术[J].纳米技术与精密工程.2008,(04):312-315.
    [59]鲍怀谦,徐家文.超纯水电解加工机理及工艺基础[J].化工学报.2006,(03):626-629.
    [60]王桦.纯水电导温度特性的计算分析[J].云南电力技术.2003,31(001):43-45.
    [61]彭思平.超纯水微细电解加工送进装置的研制[D].南京:南京航空航天大学,2005.
    [62]Kozak, J.,Rajurkar, K., Hybrid machining process evaluation and development[C]. Proceedings of the 2nd International Conference on Machining and Measure-ments of Sculptured Surfaces.2000:501-536.
    [63]Kozak, J.,Rajurkar, K. P. Laser assisted electrochemical machining[J]. Trans.N. Am. Manuf. Res. Inst.2001:421-427.
    [64]Pajak, P.,De Silva, A.,McGeough, J.,et al. Modelling the aspects of precision and efficiency in laser-assisted jet electrochemical machining (LAJECM)[J]. Journal of Materials Processing Technology.2004,149(1-3):512-518.
    [65]Rajurkar,K.P.,Zhu,D.,McGeough,J.A.,et al.New Developments in ElectroChemical Machining[J].CIRP Annals-Manufacturing Techno-logy.1999,48(2):567-579.
    [66]Jain,V.K.Magnetic field assisted abrasive based micro-/nano-finishing[J]. Journal of Materials Processing Technology.2009,209(20):6022-6038.
    [67]王世健,陈玉全.磁场对电化学加工影响的研究[J].新技术新工艺.1993,(3):17-18.
    [68]Fan, Z.,Wang, T.,Zhong, L. The mechanism of improving machining accuracy of ECM by magnetic field[J]. Journal of Materials Processing Technology.2004, 149(1-3):409-413.
    [69]范植坚,王岗罡,唐霖,等.磁场辅助电解加工装置的磁场设计和试验[J].机械工程学报.2010.(1):194-198.
    [70]Rumyantsev,E.,Davydov,A.Electrochemical machining of metals[M]. Moscow: Mir Publishers,1989.
    [71]朱永伟,徐玉明,齐金华.超声—电解复合微细加工阴极制作工艺研究[J].宇航材料工艺.2007,37(4):4.
    [72]王磊,朱荻,曲宁松,等.微细群孔电解加工试验研究[J].微细加工技术.2007,(02):52-56+64.
    [73]王磊.微细群孔电解加工关键技术研究[D].南京:南京航空航天大学,2007.
    [74]朱荻,曲宁松.群孔电解加工方法及装置[P].中国专利:CN1895829A, 2007-1-17.
    [75]陈振荣.微孔、小孔、深孔和群孔的加工[J].航空精密制造技术.1990,(04):21-26.
    [76]Trimmer, A. L. Electrochemical machining of micro and nanostructures with ultra-short voltage pulses[J].University of Virginia.2005,66-01:0416.
    [77]王维,朱荻,曲宁松,等.群孔管电极电解加工均流设计及其试验研究[J].航空学报.2010,31(08):1667-1673.
    [78]刘金国,曲宁松,李寒松,等.活动阴极模板电解加工微小群孔的研究[J].电加工与模具.2010,(03):33-37.
    [79]朱荻.国外电解加工的研究进展[J].电加工与模具.2000,,(1):11-16.
    [80]韩桂海.三维微细电解加工技术研究[D].广州:广东工业大学,2005.
    [81]李志永,季画.电解加工在微细制造技术中的应用研究[J].机械设计与制造.2006,(06):77-79.
    [82]朱荻,王明环,明平美,等.微细电化学加工技术[J].纳米技术与精密工程.2005,3(2):151-155.
    [83]Bard,A.J.,Faulkner,L.R.Electrochemical methods:fundamentals and applications [M].New York:John Wiley And Sons,1980.
    [84]Gileadi, E.,Kirowa-Eisner, E.,Penciner, J. Interfacial electrochemistry:an expe-rimental approach[M].Massachusetts:Addison-Wesley Publishing Co., Inc.,1975.
    [86]张朝阳.超短脉冲电流微细电解加工技术研究[J].中国机械工程.2005,16(14).
    [87]朱保国.脉冲电化学微细加工关键技术研究[D].哈尔滨:哈尔滨工业大学. 2007.
    [88]李小海.微细电解加工系统及其工艺技术研究[D].哈尔滨:哈尔滨工业大学,2006.
    [89]Yu, C.,Liu, C.,Huang, Y.,et al. The investigation of the flow characteristics of the gap in the pulse electrochemical machining (PECM)[J]. CIRP Annals-Manufacturing Technology.1982,31(1):119-123.
    [90]Rasmussen, H.,McGeough, J. A. Theory of overpotentials in electrochemical micromachining[J]. Journal of Materials Processing Technology.2004,149 (1-3): 504-505.
    [91]韩子平.脉冲微细电解加工技术研究[D].广州:广东工业大学,2008.
    [92]张朝阳.纳秒脉冲电流微细电解加工技术研究[D].南京:南京航空航天大学,2006.
    [93]De Silva,A.K.M.,McGeough, J. A. Process monitoring of electrochemical micro-machining[J]. Journal of Materials Processing Technology.1998,76(Comp-endex):165-169.
    [94]Crichton, I. M.,McGeough, J. A. Studies of the discharge machanisms in electrochemical arc machining[J]. Journal of Applied Electrochemistry.1985,15 (Compendex):113-119.
    [95]Zhu, D.,Rajurkar, K. P. Modeling and verification of interelectrode gap in electrochemical machining with passivating electrolyte[J]. American Society of Mechanical Engineers, Manufacturing Engineering Division, MED.1999, 10(Compendex):589-596.
    [96]朱荻,云乃彰,汪炜,等.微机电系统与微细加工技术[M].第一版.哈尔滨:哈尔滨工程大学出版社,2008.
    [97]Rajurkar, K. P.,Wei, B.,Kozak, J.,et al. Modelling and Monitoring Interelectrode Gap in Pulse Electrochemical Machining[J]. CIRP Annals-Manufacturing Tech-nology.1995,44(1):177-180.
    [98]王贺宾,郭钟宁,罗红平.微细电解加工技术研究现状与展望[J].组合机床与自动化加工技术.2011,(04):108-112.
    [99]陈安骏.超声电解复合加工在微器件制作中的基础研究[D].南京:南京航空 航天大学,2005.
    [100]王明环,米获,徐惠宇.微螺旋电极在改善微细电解加工性能中的应用[J].机械科学与技术.2006,25(3):4.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700