用户名: 密码: 验证码:
超临界二氧化碳驱替煤层瓦斯研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
煤层气是煤在变质和演化过程中的伴生产物,也是煤的伴生矿产资源,俗称瓦斯,其主要成分是甲烷,属非常规天然气。合理开采并利用煤层气资源,既能弥补我国能源结构比例不平衡所引起的能源缺失,也是对碳资源的节约与高效利用。能源和环境双重危机日益严重地威胁着人类的生存,世界各国纷纷开始寻求化解这一危机的最佳途径。
     我国煤层整体上渗透性都比较差,大多属于低渗透性储层,瓦斯采收率非常低。在我国大规模的煤炭生产过程中,绝大部分瓦斯气体直接排放到大气中,既浪费资源又造成环境污染等问题。煤矿上对于瓦斯的抽放主要体现在减小井下瓦斯浓度预防瓦斯事故方面。现阶段有关煤层气的概念正在经历根本性的转变,许多国家不再仅仅把煤矿瓦斯看成是影响煤矿安全生产的不利因素,而是将其看做一种重要的自然资源加以开采利用。
     本文在注气增产煤层气的基础上,提出超临界二氧化碳驱替煤层甲烷的方法。文中探讨了煤体裂隙、孔隙结构特征以及甲烷气体在其中的储运机理。以超临界二氧化碳流体特有的物理化学性质,注入超临界二氧化碳可以有效改善煤的渗透性,从而达到甲烷的增产目的。针对我国煤层储层现状结合超临界二氧化碳流体较强的溶解能力,采用注入超临界二氧化碳流体增产的方法有着很好的应用前景。
     超临界二氧化碳驱替煤体内瓦斯时,利用超临界流体对有机质较强的溶解能力,将会溶解煤基质中的部分有机化合物,有效改善了煤的孔隙、裂隙结构,扩增了煤体内瓦斯气体的运移通道,有利于瓦斯的采出。这种技术无污染,低能耗,在实际生产中也易于操作控制,是提高煤层气采收率的理想方法。
     重点以实验研究的方法,进行了CH4和CO2气体的单相吸附、解吸实验,以实验的方法对比研究了二氧化碳和超临界二氧化碳在甲烷增产方面的驱替效率,超临界二氧化碳驱替效率在常规二氧化碳的基础上成倍增加。
     在超临界二氧化碳驱替甲烷实验中,分等温、等压两组进行,分别考虑温度和压力对实验结果的影响。从最终实验结果来看,温度对驱替效率的影响大于压力的影响,经一系列实验研究并分析结果之后,选取80℃、8.OMpa为超临界二氧化碳在本实验中煤试件的最佳驱替条件。
     所以,无论是从增产效率来讲,还是从资源利用、安全生产、环境保护等方面来讲,煤层气是否科学合理的开采及利用都具有现实指导意义。
Coal bed gas is coal metamorphism and evolution process with production, but also coal mineral resources, commonly known as gas, whose main component is methane, which belongs to the unconventional natural gas. Reasonable exploitation and utilization of coalbed methane resources, can make up for China's energy structure imbalance caused by the energy loss, but also on the carbon resources conservation and utilization. Energy and environment crisis is increasingly serious threat to human survival, countries around the world have started to seek to resolve the crisis in the best way.
     Our country coal whole permeability than the poor, mostly belonging to the low permeability reservoir, gas recovery rate is very low. In our country large-scale coal production process, most of the gas emitted directly to the atmosphere, is not only a waste of resources caused by environmental pollution. Coal for gas drainage is mainly reflected in the reduction of underground gas concentration prevention of gas accident. Stage related coal seam gas concepts are undergoing fundamental change, many countries not only put the coal gas as affecting coal mine safety production of unfavorable factors, but will it as a kind of important natural resources to be exploited.
     In this paper, methane production by gas injection in coal seam gas on the basis of supercritical carbon dioxide, forward displacement coalbed methane method. This paper discusses the fissures of coal, pore structure and methane gas in the storage and transportation mechanism. With supercritical carbon dioxide fluid unique physical and chemical properties, injecting supercritical carbon dioxide can effectively improve the permeability of coal, so as to achieve the purpose of increasing yield of methane. In view of our country coal seam reservoir status with supercritical carbon dioxide fluid strong solvency, by injecting supercritical fluid carbon dioxide production method has a very good application prospect.
     Supercritical carbon dioxide flooding in coal gas, using supercritical fluid to organic matter dissolving ability strong, will dissolve in coal matrix part of organic compounds, can effectively improve the coal pore, fracture structure, expansion of coal body gas migration channel, beneficial gas recovery. This technique of no pollution, low energy consumption, in the actual production and easy operation and control, is to improve the recovery rate of coal bed methane ideal method.
     Key to the experimental study method, using CH4and CO2gas phase adsorption, desorption experiments, experimental methods to the comparative study of carbon dioxide and methane production of supercritical carbon dioxide in the displacement efficiency, supercritical carbon dioxide displacement efficiency in the conventional carbon dioxide based on multiply.
     In supercritical carbon dioxide flooding experiment of methane, isothermal, isobaric points in two groups, respectively, considering the temperature and pressure effects on the experimental results. From the end of the experimental results, the influence of temperature on displacement efficiency is greater than the pressure effects, through a series of experimental research and the analysis of the results, select80℃,8.0Mpa for supercritical carbon dioxide in the experiment of coal specimen best flooding condition.
     Therefore, whether it is from the production efficiency, or from the resource utilization, production safety, environmental protection and other aspects, coal-bed gas is scientific and reasonable exploitation and utilization are of practical guiding significance.
引文
[1]马红霞.低碳经济:山西转型跨越发展的必由之路[J].中共山西省委党校学报,2010,33(6):61-63.
    [2]任培兵.行业动态[J].化工科技市场,2010,33(6):47-50.
    [3]罗陶涛.沁水盆地煤岩储层特征及压裂增产措施研究[D].成都理工大学,2010.
    [4]崔荣国.国内外煤层气开发利用现状[J].国土资源情报,2005,(11):22-26.
    [5]司光耀.国内外煤层气利用现状及前景展望[J].中国煤层气,2009,18(2):23-25.
    [6]高远文,姚艳斌,郭广山.注气提高煤层气采收率研究进展[J].资源与产业,2007,9(6):105-108.
    [7]Goodman RE Methods of geological engineering in dis continuous rocks West Publishing Company,1977.
    [8]郑爱玲,王新海,刘德华.注气驱替煤层气数值模拟研究[J].石油钻探技术,2006,34(2):55-57.
    [9]Arri LE, Yee D, Morgan W D and Jeausonne M W,1992, Modelling coal bed methane production with binary gas sorption, in Proceedings of SPE Rocky Mountains Regional Meeting, SPE 24363, Society of Petroleum Engineers, Casper,1997:459-472.
    [10]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[J].岩石力学与工程学报,2005,24(12):2081-2084.
    [11]唐书恒,杨起,汤达祯等.注气提高煤层甲烷采收率机理及实验研究[J].石油实验地质,2002,24(06):545-548.
    [12]杨涛.超临界CO2抽提对煤的改性实验研究[D].太原理工大学,2010.
    [13]陈德民.红菱矿区煤层气藏开发方法研究[D].中国地质大学(北京),2008.
    [14]苏现波.煤层气储集层的孔隙特征[J].焦作工学院学报,1998,17(1):611.
    [15]McCulloch C M, Deul M, Jeran P W. Cleat in bituminous coalbeds. I n:U S Bureau o f Mines Report of Investigations,7910,1974.25.
    [16]Ting F T C. Origin and spacing of cleats in coalbeds. Journal of Pressure Vessel Technology [Transaction of the ASMT].1977.624-626.
    [17]Mavor M J, Close J C. Western cretaceous coal seam project evaluation of the hamilton 3# well operated by mesa operating limited parnership. In:Gas Research Institute, ed. Gas Research Institute Topical Report, No.GRI90/0040,1989.11-78.
    [18]Close J C. Natur al fr actur es in bituminous co al gas reservoirs. In:Gas Research Institute, ed. Gas Research I nstitute Topical Report, No. GRI-91/0337,1991.168.
    [19]Law B E. The relationship between coal r ank and cleat spacing, implicatio ns for the prediction o f permeability in coal.In:Proceedings of the 1993 International Coalbed Met hane Symposium. Birmingham:The University of Alabama,1993.435-442.
    [20]Gash B W, Vole R F, Potter G, et al. The effect of cleat orientatio n and confining pressure o n cleat porosity,permeability and relativ e permeabilit y in coal. I n: Proceedings of the 1993 International Coalbed Methane Symposium.Birmingham:The University of Alabama,1993.247-256.
    [21]Tyler R, Laubach S E, Ambrose W A, et al. Coal fracture patterns in the for eland of the cor diller an thrust belt,Wester United States. In:Proceedings of the 1993 Inter national Coalbed Methane Symposium. Birmingham:TheUniversity of Alabama,1993.695-704.
    [22]吴迪.二氧化碳驱替煤层瓦斯机理与实验研究[D].太原理工大学.
    [23]王晓亮.煤层瓦斯流动理论模拟研究[D].太原理工大学,2003.
    [24]王乐平,张国华,王现强.煤层气的储层特征及其对煤层气解吸的影响[J].煤炭技术,2009,28(1):156-158.
    [25]商永涛.煤层气渗流机理及产能评价研究[D].中国石油大学(华东),2008.
    [26]杜玉娥.煤的孔隙特征对煤层气解吸的影响[D].西安科技大学,2010.
    [27]张天军,许鸿杰,李树刚等.粒径大小对煤吸附甲烷的影响[J].湖南科技大学学报(自然科学版),2009,24(1):9-11.
    [28]席长丰.煤层气非常规井开发优化设计研究[D].中国石油大学(北京),2007.
    [29]石强.煤体结构及渗流特性的核磁共振成像实验研究[D].辽宁工程技术大学,2006.
    [30]李小彦,解光新.孔隙结构在煤层气运移过程中的作用--以沁水盆地为例[J].天然气地球科学,2004,15(4):341-343.
    [31]霍永忠.煤储层的气体解吸特性研究[J].天然气工业,2004,24(5):24-26.
    [32]乔军伟.低阶煤孔隙特征与解吸规律研究[D].西安科技大学,2009.
    [33]孙可明.低渗透煤层气开采与注气增产流固耦合理论及其应用[D].辽宁工程技术大学,2004.
    [34]程林峰.煤层气注入增产法的探讨[J].中国煤层气,2006,3(3):40-43.
    [35]王强.超临界二氧化碳体系中马来酸酐加氢反应的研究[D].中国科学院研究生院,2010.
    [36]牛玉振.内压缩空分流程中主换热器的设计[J].低温与特气,2010,28(2):9-12.
    [37]周扬.浅析超临界流体在废水处理中的应用[J].中小企业管理与科技,2011,(21):238.
    [38]张玉利.介孔氧化硅负载Pd、Rh有机金属催化剂的制备及其催化反应研究[D].上海师范大学,2011.
    [39]梁玉兰.新技术在天然产物分离中的应用进展[J].广东化工,2007,34(165):63-65.
    [40]张青松.CO2超临界萃取葡萄皮渣中白藜芦醇工艺及其纯化研究[D].甘肃农业大学,2009.
    [41]李娜.煤层气分支井产能及优化技术[D].中国石油大学(华东),2010.
    [42]赵光宇.提高煤层气采收率途径的探讨[J].山西煤炭,2004,24(3):19-21.
    [43]杜维甲,肖迅.水力喷射径向钻孔在阜新刘家区煤层气开发中的应用[J].辽宁工程技术大学学报(自然科学版),2010,29(1):32-35.
    [44]郑爱玲,王新海,刘德华.注气驱替煤层气数值模拟研究[J].石油钻探技术,2006,34(2):55-57.
    [45]贾哲,张程.超临界乙烯水合萃取技术相关问题探讨[J].化学工程与装备,2010,(5):63-64.
    [46]马志宏,郭勇义,吴世跃.注入二氧化碳及氮气驱替煤层气机理的实验研究[J].太原理工大学学报,2001,32(4):335-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700