用户名: 密码: 验证码:
基于地震动模拟的一致危险性谱与条件均值谱研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对缺乏真实地震动记录地区进行地震危险性研究和地震动选择,对结构抗震设计有重要的参考作用。一致危险性反应谱是概率地震危险性分析的重要拓展,通常会被用来做目标谱以选择地震动记录;条件均值谱则能够在以感兴趣的基本周期所对应的谱加速度发生为条件,提供一条期望的反应谱,它是一种有效选择地震动记录的工具。
     本文以美国中部Memphis TN地区为研究目标,对该区内1000年可能发生的地震进行模拟。基于该地区的地震发生的概率、震级分布以及震源位置等统计资料,对Memphis TN地区周围1000年内可能发生的地震进行模拟,分别建立了点源模型和随机有限断层模型,并产生对应不同震源模型的人工地震加速度时程和伪加速度反应谱。其中,点源模型采用SMSIM中AB95_BC模型,随机有限断层模型则采用增加标准化因子的改进模型。通过对人工模拟地震动进行统计,建立其对数正态统计模型,并对其进行假设检验,得到基本周期为0.1s和1.0s的地震危险性曲线,并获得50年超越概率为10%和2%的一致危险性谱,并建立50年超越概率为2%的一直危险性谱对应的条件均值谱。最后,将目标谱由一致危险性谱转化为模拟谱,并借助贪心优化技术,从已有地震动数据库中选择10条与条件均值谱相容的地震动记录。
     研究表明:基于条件均值谱的地震动选择方法,所选地震动记录样本的均值和方差与目标谱较为一致。进一步经过贪心优化技术处理,可使新的地震动样本的形状和目标谱更为接近。
The study on seismic hazard analysis and record selection in the buildings site without enough earthquake record data is very important to the seismic design of structures. As an important extension of probabilistic seismic hazard analysis (PSHA), the uniform hazard spectrum (UHS) is usually used as a target spectrum to select earthquake records. While the conditional mean spectrum (CMS) can provide the expected resonse sepectrum conditioned on occurrence of a target spectral accelation value at the period of interest, so it is another useful fool for selecting ground motions.
     In this thesis, the city Memphis TN in the USA is selected as a site location of interest to simulate the earthquakes that may occure in the future 1000 years. Based on the rate of occurrence, the distribution of magnitude, the location of focus, all the earthquakes that may occure near Memphis TN in 1000 years are simulated. The point source model and stochastic finite fault model are buillt, and the acceleration time history and pseudo-spectral acceleration spectrum are generated respectively. The point source model is AB95_BC model of the program SMSIM (3.1), while the stochastic finite fault model is a modified one with a normalized factor. All the records are analyzed with statistical methods using lognormal distribution in hypothesis testing. The curves of seismic hazard at T=0.1 & T=1.0s and UHSs with exceedance probability of 2% & 10% in 50 years are obtained, while the CMS corresponding to the UHS with exceedance probability of 2% & 10% in 50 years are also derived. Finally, the target spectrum is transformed from UHS to CMS, and 10 records which are compatible with CMS are selected from the database with a greed optimization technique.
     It is demonstrated in this thesis that the mean and standard deviation of the samples which are selected based on CMS are consistent with the target spectrum, and that the shapes of new samples which are dealt with the greed optimization technique are more consistent with the target spectrum.
引文
[1]郭迅.汶川大地震震害特点与成因分析[J].地震工程与工程振动, 2009, 29(6): 74-87.
    [2]夏念恩,谭正清.从汶川地震谈对建筑结构抗震的几点思考[J].地震工程与工程振动, 2008, 10(4): 9-13.
    [3]唐洁清,刘凡.从汶川地震谈对建筑结构抗震的几点思考基于玉树地震建筑震害谈我国建筑抗震[J].风险管理, 2010, 19(2): 38-40.
    [4]刘吉夫,史培军,范一大,张垲铭. 2010年4月14日青海玉树地震灾害特点启示[J].北京师范大学学报(自然科学版), 2010, 46(5): 630-633.
    [5]梁凯利,王峰编译.中外地震专家对海地地震的综合分析[J].国际地震动态, 2010, 1: 3-5.
    [6]陈思羽.智利地震综述.中国应急救援, 2010, 2.
    [7]李忠东.强震下的“零死亡”——新西兰地震引发的启示.现代职业安全,2010, 10: 84-85.
    [8]上海市工程建设规范.建筑抗震设计规程DGJ08-9-2003.上海市建设工程标准定额管理总站, 2003.
    [9]王亚勇,程民宪,刘小弟.结构抗震时程分析法输入地震记录的选择方法及其应用[J].建筑结构, 1992, 5: 3-7.
    [10]杨薄,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报, 2000, 33(6): 33-37.
    [11]邓军,唐家祥.时程分析法输入地震记录的选择与实例[J].工业建筑, 2000, 30(8): 9-12.
    [12] Kurama Y C, Farrow K T. Ground Motion Scaling Methods for Different Site Conditions and Structure Characteristics [J]. Earthquake Engineering and Structure Dynamics, 2003, 32: 2425-2450.
    [13] Li Hyung Lee, Hyun Ho Le, Sang Whan Han. Method of Selecting Design Earthquake Ground Motion for Tall Buildings [J]. The Structural Design of Tall Building, 2000, 9: 201-213.
    [14] Baker J W, ASCE A M. Conditional Mean Spectrum: Tool for ground motion selection [J]. ASCE, 2011, 137(3): 322-331.
    [15] Somerville P G., Smith N, Punyamurthula S, Sun J. Development of Ground Motion Time Histories ofr Phase 2 of the FEMA/SAC Steel Projuect. SAC Joint Venture Report No. SAC/BD-97/04, 1997.
    [16]张翠然,陈厚群.工程地震动模拟研究综述[J].世界地震工程, 2008, 24(2):150-157.
    [17] Housner G W. Characteristics of strongmotion earthquake [J]. Bulletin of the Seismological Society of America, 1947, 37(1): 19-31.
    [18] Goodman L E, Rosenblueth E, Newmark N M. Aseismic design of firmly founded elastic structures [J]. Transactions ASCE, 1955, 120: 782-802.
    [19] Housner G W. Properties of strong motion earthquake [J], Bulletin of the Seismological Society of America, 1955, 45(3): 197-218.
    [20] L in Y K. Probabilistic Theory of Structural Dynamics [M]. New York: 1967. 67-95.
    [21] Kanai K. Semi-empirical formula for the seismic characteristics of the ground [J]. Bulletin of the Earthquake Research Institute, University of Tokyo, 1957, 35(2): 309-325.
    [22] Tajimi H. A Statistical Method of Determining the Maximum Response of a Building during Earthquake [C]. Proceedings of the Second World Conference on Earthquake Engineering, Japan: Tokyo, 1960, 2: 781-798.
    [23] Barstein M F. Application of probability methods for design the effect of seismic forces on engineering stcture [C]. Proceedings of the Second World Conference on Earthquake Engineering, Tokyo, Japan, 1960: 1467-1482.
    [24]欧进萍,牛荻涛,杜修力.设计用随机地震动的模型及其参数确定[J].地震工程与工程振动, 1991, 11(3): 45-54.
    [25] Clough R W, Penzien J.王光远等译.结构动力学[M].北京:科学出版社, 1983.
    [26] Herrera I, Rosenblueth E, Rascn O A. Earthquake spectrum prediction for the valley of Mexico [C]. Proc. 3rd. World Conference on Earthquake Engineering, Nueva Zelandia, 1965: 61-74.
    [27] Bolotin V V. Statistical theory of a seismic design of structures [C]. Proceedings of the Second World Conference on Earthquake Engineering, Tokyo, Japan: 1960, 2: 1365-1374
    [28] Bogdanoff J L, Goldberg J E, Bernard M C. Response of a simple structure to a random earthquake type disturbance [J]. Bulletin of the Seismological Society of America, 1961, 51 (2): 293-310.
    [29] Housner G W, Jennings P C. Generation of artificial earthquake [J]. Journal of the Engineering Mechanics Division, ASCE, 1964, 90(EM1): 113-150.
    [30] Amin M, Ang A H S. Nonstationary stochastic model of earthquake motions [J]. Journal of the Engineering Mechanics Division, ASCE, 1968, 94(EM2): 559– 583.
    [31] Scanlan R H, Sachs K. Earthquake time histories and response spectra [J]. Journal of the Engineering Mechanics Division, ASCE, 1974, 100(EM4): 635-655.
    [32] Ohsaki Y. On the significance of phase content in earthquake ground motions [J]. E arthquake Engineering and Structural Dynamics, 1979, 7(5): 427-439.
    [33]胡聿贤,何训.考虑相位谱的人造地震动反应谱拟合[J].地震工程与工程振动, 1986, 6(2): 37-51.
    [34] Jamshid G, Lin C C J. New method of generating spectrum compatible accelerograms using neural networks [J]. Earthquake Engineering and Structural Dynamics, 1998, 27(4): 377-396.
    [35] Lin C C J, Jamshid G. Generating multiple spectrum compatible accelerograms using stochastic neural networks [J]. Earthquake Engineering and Structural Dynamics, 2001, 30(7): 1021-1042.
    [36] Beaudet P R. Synthesis of nonstationary seismic signal [J]. Bulletin of the Seismological Society of America, 1970, 60(5): 1615-1624
    [37] Saragoni G R, Hart G C. Simulation of artificial earthquakes [J]. Earthquake Engineering and Structu ral Dynamics, 1974, 2(3): 249-267.
    [38] Kameda H. Evolutionary spectra of seismogram by multifilter [J]. Journal of the Engineering Mechanics Division, ASCE, 1975, 101(6): 787-801.
    [39] Kameda H, Goto H, Sugito M, et al. Prediction of nonstationary earthquake motions for given magnitude, Distance and specific site condition [C]. Proceedings of the 2nd US National Conference on Earthquake Engineering, Stanford University, 1979: 243-252.
    [40] Kameda H, Sugito M, Asamara T. Simulated earthquake motions scaled for magnitude, distance and local soil conditions [C]. Proceedings of the 7th World Conference on Earthquake Engineering, 1980, 2: 295-302.
    [41] Goto H, Sugito M, Kameda H, et al. Prediction of nonstationary earthquake motions for moderate and great earthquakes on rock surface [R]. Annuals, Disaster prevention research in stitute, Kyoto University, 1984, 27, B-2: 19-48.
    [42] Hoshiga M, Chiba T. Physical spectral of earthquake acceleration [C]. Proceedings of the 4th Japan Earthquake Engineering Symposium, 1975.
    [43] Naraoka K, Watanabe T. Generation of nonstationary earthquake ground motions using phase characteristics [C]. Transactions of the 9th International Conference on Structural Mechanics in Reactor Technology, 1987, K1: 37-42.
    [44] Thrinsson H, Kiremidjian A S, Winterstein S R. Modeling of earthquake ground motion in the frequency domain, Technical Report 134 [R]. The John A. Blume Earthquake Engineering Center, Department of Civil and Environmental Engineering, Stanford University, Stanford, California: USA, 2000.
    [45] Boore D M. Phase derivatives and smiulation of strong ground motions [J]. Bulletin of the Seismological Society of America, 2003, 93(3): 1132-1143
    [46]梁建文.非平稳地震动过程模拟方法( ? ) [J].地震学报, 2005, 27(2): 213- 228.
    [47]梁建文.非平稳地震动过程模拟方法(ò) [J].地震学报, 2005, 27(3): 346- 351.
    [48]王国新,史家平.随机有限断层法在汶川强地震动模拟中的应用[J].自然科学进展, 2009, 19(6): 664-669.
    [49] Haskell N A. Elastic displacements in the near-field of Propagating fault [J]. BSSA, 1969, 59: 865-908.
    [50] Hartzell S, Helmberger D V. Strong-motion modeling of the Imperial Valley earthquake of 1979 [J]. BASS, 1982, 72(2): 571-596.
    [51] Bouchon M. Discrete Wave Number Representation of Elastic Wave Field in Three-Space Dimensions [J]. J. Geophys. Res., 1979, 84(B7): 3609-3614.
    [52]李启成.经验格林函数方法模拟地震动研究.中国地震局工程力学研究所,工学博士学位论文, 2010.
    [53] Harzell S H. Earthquake aftershoch as Green’s function [J]. Geophys. R E. let., 1978, 5(1): 1-4.
    [54] Kanamori H. A semi-empirical approach to prediction of long-period ground motions from great earthquake [J]. BASS, 1979, 69(6): 1654-1670.
    [55] Irikura K. Semi-empirical estimation of strong ground motions during large earthquakes [J]. Bulletin of Disaster Prevention Research Institute, Kyoto Univ., 1983, 33(2): 63-104.
    [56] Irikura K, Kamae K. Estimation of strong ground motion in broad-frequency band based on a seismic source scaling model and an empirical Green’s function technique [J]. ANNALI DI GEOFISICA, 6 December 1994, VOL. XXXVII, N: 1721-1743.
    [57]金星,刘启方.断层附近强地震动半经验合成方法的研究[J].地震工程与工程震动, 2002, 22(4): 22-27.
    [58]吴迪,罗奇峰,熊焱.考虑凹凸体理论的经验格林函数方法.地震学报, 2009, 31(5): 555-563.
    [59]李启成,景立平.经验格林函数方法的理论探讨[J].地震工程与工程震动, 2010, 30(3): 39-44.
    [60] Boore D M. Stochastic simulation of high-frequency ground motions based on seismological models of the rediated spectra. BSSA, 1983, 73(6): 1865—1894.
    [61] Athinson G M. Earthquake source spectra in the Eastern North America [J]. Bull. Seism. Soc. Am., 1993, 83(6): 1778-1798.
    [62] Atkinson G M, Boore D M. Ground Motion Relations for eastern North America [J]. Bull. Seism. Soc. Am, 1995, 85(1): 17-30.
    [63]董娣,刘锐,桑向国.随机方法模拟地震动的应用研究.西北地震学报, 2006, 28(4): 298-302.
    [64] Boore D M. Simulation of Ground Motion Using the Stochastic Method. Pur appl. Geophys, 2003, 160: 635-676.
    [65] Silva W, et a1. A methodology to estimate design response spectra in thenear-source region of large earthquakes using the band-limited-white-noise ground motion model. Proc. of 4th US national conference on Eart. Eng. Pahn Spring, 1990, 1.
    [66] Berenev I A, Athinson G M. Modeling Finite-Fault Radition from theω2 Spectrum. Bulletin of Seismological Society of America, 1997, 87(1): 67-84.
    [67] Berenev I A, Athinson G M. FINSIM - a FORTRAN Program for simulating Stochastic Acceleration Time Histories from Finite Fault. Seismological Research Letters, 1998a, 69(1): 27-31.
    [68] Berenev I A, Athinson G M. Generic Finite-Fault Model for Ground-Motion Prediction in Eastern North America. Bulletin of Seismological Society of America, 1999, 89(3): 608-625.
    [69] Motazedian D, Athinson G M. Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency. Bulletin of Seismological Society of America, 2005, 95(3): 995-1010.
    [70]石玉成,陈厚群,李敏,卢育霞.随机有限断层法合成地震动的研究与应用[J].地震工程与工程震动, 2005, 25(4): 18-23.
    [71]王国新,史家平.近场强地震动合成方法研究及地震动模拟[J].东北地震研究, 2008, 24(6): 4-10.
    [72]孙晓丹,陶夏新,王国新,刘陶钧.地震动随机合成中与震源谱相关的动力学拐角频率[J].地震学报, 2009, 31(5): 537-543.
    [73]孙晓丹.强地震动场估计中若干问题的研究[D].哈尔滨工业大学博士论文, 2010.
    [74]陈富.地震地面运动加速度记录与强度参数选择的统计方法研究[D].哈尔滨工业大学硕士论文, 2011.
    [75] Wu Chunlin. Earthquake motion simulation and reliability implication. Ph. D. dissertation of the University of Illinois, 2000.
    [76]中华人民共和国国家标准.建筑抗震设计规范GB50011—2001[S].中国建筑工业出版社, 2003.
    [77]杨溥,李英民,赖明.结构时程分析法输入地震波的选择控制指标[J].土木工程学报, 2000, 33(6): 33-37.
    [78]安自辉.结构在罕遇地震下的强震记录选择[D].西安建筑科技大学硕士论文,2004.
    [79]肖明葵,刘纲,白少良.基于能量反应的地震动输入选择方法讨论[J].世界地震工程,2006, 22(3): 89-94.
    [80]翟长海,谢礼立.抗震结构最不利设计地震研究[J].土木工程学报, 2005, 38(12): 51-55.
    [81] Jayaram N, Lin Ting, Baker J W. A Computationally Efficient Ground-MotionSelection Algorithm for Matching a Target Response Spectrum Mean and Variance. Earthquake Spectra, 2011, 27(3), 797-815.
    [82] Motazedian D, Athinson G M. Stochastic Finite-Fault Modling on a Dynamic Corner Frequency [J]. Bulletin of the Seismological Society of America, 2005, 95(3): 995-1010.
    [83] Baker J W. An Introduction to Probabilitic Seismic Hazard Analysis (PSHA). 2008, version 1.3.
    [84] Applied Technology Council. ATC-58, Guidelines for Seismic Performance Assessment of Buildings [R]. Redwood City, California, 2009.
    [85] Baker J W, Jayaram N. Correlation of spectral acceleration values from NGA ground motion models [J]. Earthquake Spectra, 2008, 24(1), 299-317.
    [86] Jayaram N, Lin T, Baker J W. A computationally efficient ground-motion selection algorithm for matching a target response spectrum mean and variance. Earthquake Spectra, 2011, 27(3), 797-815.
    [87] Jayaram N, Baker J W. Ground-Motion Selection for PEER Transportation Research Program. Proceedings, 7th International Conference on Urban Earthquake Engineering (7CUEE) & 5th International Conference on Earthquake Engineering (5ICEE), 2011,Tokyo, Japan, 9p.
    [88] Baker J W, Cornell C A. Spectral Shape, Epsilon and Record Selection. Earthquake Engineering & Structural Dynamics, 2006, 35(9) 1077-1095.
    [89] Boore D M. Simulation of Ground Motion Using the Stochastic Method. Pure and Appied Geophysics, 2003, 160: 635-676.
    [90] Barenberg M R. Inelastic response of spectrum compatible artificial accelerogram. Earthquake Spectra, 1989, 5(4): 633-654.
    [91] Naeim F, Lew M. On the use of design spectrum compatible time histories. Earthquake Spectra, 1995, 11(1): 111-127.
    [92] Elenas A. Interdipendency between seismic acceleration parameters and the behavior of structures. Soil Dyn. Earthquake Eng., 1997, 16: 317-322.
    [93] Elenas A. Correlation between seismic acceleration parameters and overall structural damage indices of buildings. Soil Dyn. Earthquake Eng., 2000, 20: 93-100.
    [94] Naumoski N, Saatcioglu M, Amiri-Hormozake K. Effects of scaling of earthquake excitions on the dynamic response of reinforced concrete frame building. Proc., 13th World Conference on Earthquake Engineering, WCEE, Vancouver, Canada, 2004, 2917.
    [95] Bommer J J, Acevedo A B. The use of real earthquake accelerograms as input to dynamic analysis. Journal of Earthquake Engineering, 2004, 8(1): 43-91.
    [96] Luco N, Cornell C A. Structure-specific scalar intensity measures for near-source and ordinary earthquake ground motions. Earthquake Spectra, 2007, 23: 357-392.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700