用户名: 密码: 验证码:
Si表面吸附及Si掺杂缺陷GaN磁性的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硅作为最重要的半导体材料,其表面结构及其外延生长一直是人们关注的研究课题。由于Au/Si界面在电子器件和表面催化方面的广泛应用,深入了解其微观结构与特性具有重要的意义。本文采用基于密度泛函理论(DFT)的第一性原理计算方法,对Si各种表面结构进行了搭建和重构计算,并对Au在Si(100)p(2×2)表面上的吸附结构,电子性质以及Si对GaN的d0磁性的影响进行了研究,其主要结论如下:
     首先,研究了Si(100)表面p(2×1)、p(2×2)和c(4×2)三种常见重构的结构的不同结构,即是p(2×1)在表面两种不同的平行排列方式。计算不同重构Si(100)表面结构中不对称(duckled)二聚体(dimer)能量,不对称二聚体p(2×1)和这两种交替排列的不对称二聚体结构的相互转化需要能量的下降而转变为另一种排列顺序,p(2×2)和c(4×2)两种重构结构中每个dimer之间的能量差很小,仅为4meV。对Si(100)p(2×2)表面进行电荷密度分析,结果表明Si(100)p(2×2)表面不对称二聚体中两个原子化学性质不同,Si-down原子中的电子转移到Si-up原子中,从而Si-up原子是少电子态,而Si-down原子是多电子态。
     其次,对单个Au原子在Si(100)p(2×2)表面上的吸附进行了研究,发现Au吸附在两个相邻平行dimer行之间沟槽的位置上是最稳定结构;对该结构的电子结构与电子性质的研究,发现Au原子的吸附饱和了表面悬挂键,而Au原子与表面硅原子形成具有部分离子键特性的共价键;另外,发现清洁Si表面能带结构中存在的两条能带,由于Au原子的吸附,在Au吸附Si(100)p(2×2)表面的能带结构中消失, Au原子饱和了Si(100)表面上一部分的悬挂键,使得整个体系中的带隙减小。而对Au3团簇在Si(100)p(2×2)表面上的吸附研究,发现吸附较佳的位置是在Si(100)p(2×2)表面沟槽处,Au3团簇中的一对Au键断裂,形成折线型Au链,其它两个Au-Au键的键长缩短;Au原子的增加使得整个体系中的能带间隙近一步减小。对在Au/Si(100)p(2×2)表面上吸附Cd和S的计算结果表明,S原子更易吸附在Au/Si(100)p(2×2)表面上。
     最后,利用第一性原理局域自旋密度近似方法对Si参杂GaN的d0铁磁性进行了研究。研究表明Ga空位缺陷会产生3μB的磁矩,而Si掺杂后对GaN d0铁磁性的影响明显;Si掺杂后缺陷诱导的GaN磁矩发生淬灭,磁矩减小到2μB,随Si含量的增加磁矩进一步减少。这一理论结果对实验有指导意义。
Silicon is one of the most important semiconductor materials; the surface structures and epitaxial growth of Si have been attracting attention. It is significant to characterize and understand the microstructures of Au/Si interface due to its wide application in the electronic devices and surface catalytic engineering. By using first-principles calculations based on the density functional theory (DFT), the dissertation is devoted to the study of the surface structure and electronic properties of Au adsorbed on the surface of Si(100)p(2×2), and investigation of the magnetism of d0 in GaN and the effect of Si-doping on the magnetism in GaN. The main results are as follows:
     The differences of the Si(100) surface of the p(2×1), p(2×2) and c(4×2) reconstruction have been firstly studied. These reconstructions can be explained in terms of different arrangements of alternately buckled dimers. Distinguishing between p (2×1) asymmetric buckled dimers and alternately buckled dimers requires going down another order of magnitude on the energy scale. The smallest energy difference between the p(2×2) and the c(4×2) reconstructions is only 4meV. In this paper, we study the adsorption on the Si(100) p(2×2) surface, and analyse the surface charge density. The Si atoms on the Si(100) p(2×2) surface in the buckled dimer differ chemically. Because of the charge transfer from the down dimer atom(Si-down) to the up dimer atom(Si-up). Si-up is negatively charged, and Si-down is electron deficient.
     Then we calculated adsorption configurations of single Au atom on Si(100) p(2×2). The results indicate a global minimum energy when the Au atom is absorbed between two Si-dimer rows(BDR). The Au atom is covalently bonded to two Si atoms, and it can saturate dangling bonds of Si atoms. The covalent bond is consisted of partial ionic bonds between the Au and the surface Si atom. we investigate the adsorption of Au3 cluster on the Si(100) p(2×2), when the Au3 cluster also is adsorbed between two Si-dimer rows(BDR), the energy is smaller. After relaxtion, in the Au trimer, one Au-Au bond is broken due to the attraction of the surface Si, and the lengths of other two Au-Au bonds are decreased. Finally we study the adsorption of CdS on the Au/Si(100) p(2×2). After the full structure relaxation, the S atom is much easier adsorbed than the Cd atom on the Au/Si(100)p(2x2).
     Finally, using the first principle method within the local spin approximation, The magnetism of d0 in GaN and the effect of Si-doping on the magnetism in GaN are investigated. It is found that defect induced intrinsic magnetic moment of GaN is 3μB, while the magnetic moment is quenched to 2μB in Si doping GaN:Si. The moment decreases with increasing of the concentration of Si. The result is very helpful for experiment.
引文
[1]凌玲.半导体材料的发展现状.新材料产业.2003,115:6-10
    [2]李国强.第三代半导体材料.新材料产业.2002,103:14-17
    [3]蒋荣华.国内外半导体硅材料最新发展状况.2002,104:47-52
    [4]J.Bardeen, W.H.Brattain. The transistor, a semiconductor triode. Phys. Rev.1948,71:230
    [5]蒋荣华,肖顺珍.半导体硅材料最新发展现状.半导体技术.2002,2:3-6
    [6]王凯民,韩汝玢.半导体硅材料的发展.物理.2002,2:97-103
    [7]蒋荣华,肖顺珍.国内外多晶硅发展现状.半导体技术.2001,11:7-10
    [8]邓丰,唐正林.多晶硅的生产技术.北京:化学工业出版社,2011
    [9]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社.2002,1-12
    [10]熊欣,宋常立,仲玉林.表面物理.沈阳:辽宁科学技术出版社,1985
    [11]徐亚伯.表面物理导论.杭州:浙江大学出版社,1992,1-3
    [12]高志.潘红良.表面科学与工程.上海:华东理工大学出版社,2006,9
    [13]朱履冰.表面与界面物理.天津:天津大学出版社,1992
    [14]M.D.Pashley. Electron counting model and its application to island structures on molecular-beam epitaxy GaAs(001) and ZnSe(001). Phys. Rev. B,1989,15:10481
    [15]O.P.Antonio, J.R. da Silva, J.J.Saenz, E. Artacho. Electron correlation in the Si(100) surface. Surf. Sci.,2001,482-485:458-463
    [16]R.W.Chan, P.Haasen, E.J.Kramer. Materials science and technology:a comprehensive Treatment, vol.1, VHC:Weinheim,1993,502
    [17]查钢强. CdZnTe单晶表面、界面及位错的研究[博士学位论文].西安,西北工业大学,2007
    [18]蓝田,徐匕岳.晶体表面弛豫和重构的规律与机理.原子与分子物理学报,1995,4:438-450
    [19]J.A.Kubby, J.J.Boland. Scanning tunneling microscopy of semiconductor surface. Surf. Sci. Rep.,1996,26:61-204
    [20]D.J.Chadi. Energy-minimization approach to the atomic geometry of semiconductor surfaces. Phys. Rev. Lett.,1978,41:1062-1065
    [21]D.J.Chadi. Atomic and electronic structures of reconstructed Si(100) surfaces. Phys. Rev. Lett.,1979,43:43-47
    [22]D.J.Chadi. Vacancy-induced 2x2 reconstruction of the Ga(111) surface of GaAs. Phys. Rev. Lett.,1984.52:1911-1914
    [23]M.T. Yin, M.L. Cohen. Ground-state properties of diamond. Phys. Rev. B,1981,24: 6121-6124
    [24]丁莹如,秦关林.固体表面化学.上海科学技术出版社,1989
    [25]付宝勤.基于固体与分子经验电子理论的表面能分析及计算[硕士论文].北京,北京化工大学,2010,5-9
    [26 I.Tamm. Possible type of electron-binding on crystal surfaces. Z. Phys.,1932,76:849-850
    [27]W.Shockley. On the surface state associated with a periodic potential. Phys. Rev.,1939,56: 317-323
    [28]H.Ohno. Making nonmagnetic semiconductors ferromagnetic. Science,1998,281:951-956
    [29]H.Ohno. Magnetotransport properties of p-type (In, Mn) As diluted magnetic Ⅲ-Ⅴ Semiconductors. Phys. Rev. Lett,1992,68:2664-2667
    [30]G.A. Prinz. Magetolectronics. Science,1998,282:1660-1663
    [31]郭俊梅.GaN基稀磁半导体的制备与性质研究[硕士论文].河北:河北师范大学,2006
    [32]S.A.Wolf, D.D.Awschalom, R.A.Buhrman, J.M.Daughton, S. Von Molnar, M.L.Roukes, A.Y.Chtchelkanova, and D.M.Treger. Spintronics:a spin-based electronics vision for the future. Science,2001,294:1488-1495
    [33]S.J.Pearton, C.R.Abernathy, D.P.Norton, A.F.Hebard, L.A.Boatner, J.D.Budai. Advancds in wide bandgap materials for semiconductor spintronics. Materials Science and engineering,2003,137:R40
    [34]刘宜华,张连生.稀磁性半导体.物理学进展,1994,1:82-120
    [35]C.Zener. Interaction between the d shells in the transition metals. Phys. Rev.,1951,81:440
    [36]M. van Schilfgaarde, O.N. Mryasov. Anomalous exchange interactions in Ⅲ-Vdilute Magnetic semiconductors. Phys. Rev. B,2001,63:233205
    [37]张硕.稀磁半导体材料的局域结构及电子结构的X-ray吸收谱学研究[博士论文].安徽:中国科学技术大学,2009
    [38]T.Dietl, H.Ohno, F.Matsukura, J.Cibert, and D.Ferrand. Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors. Science,2000,287:1019-1022
    [39]T.Dietl, H.Ohno, F.Matsukura. Hole-mediated ferromagnetism in tetrahedrally coordinated semiconductors. Phys. Rev. B,2001,63:195205
    [40]M.Venkatesan, C.B.Fitzgerald, J.G.Lunney, and J.M.D.Coey. Anisotropic ferromagnetism in substituted Zinc Oxide. Phys. Rev. Lett.,2004,93:177206
    [41]J.M.D.Coey, M.Venkatesan, C.B.Fitzgerald. Donor impurity band exchang in dilute ferromagnetic Oxides. Nature Mater.,2005,4:173
    [42]G.F.Dionne. Evidence of magnetoelastic spin ordering in dilute magnetic oxides. J. Appl. Phys.,2007,101:09C509
    [43]J.K.Furdyna. Diluted magnetic semiconductors. J. Appl. Phys.,1988,64:R29-R64
    [44]常凯,夏建白.稀磁半导体—自旋和电荷的桥梁.物理,2004,6:414-418
    [45]H.Munekata, H.Ohno, S.von Molnar, A.Segmuller, L.L.Chang, and L.Esaki. Diluted magnetic Ⅲ-Ⅴ semiconductors. Phys. Rev. Lett.,1989.63:1849-1852
    [46]H.Ohno, A.Shen, F.Matsukura, A.Oiwa, A.Endo, S.Katsumoto, and Y.Lye. (Ga,Mn)As:a new Diluted magnetic semiconductor based on Ga As. Appl. Phys. Lett.,1996,69:363
    [47]G.L.Glen, C.G.Dodd. Use of molecular orbital theory to interprex X-ray K-absorption Spectral data. J. Appl. Phys.,1968,39:5372
    [48]Z.Y.Wu, G.Ouvrard, P.Gressier, and C.R.Natoli. Ti and O K edges for titanium oxides by Multiple scattering calculations:comparison to XAS and EELS spectra. Phys. Rev. B,1997, 55:10382-10391
    [49]周雪云.稀磁性半导体研究[博士论文].甘肃:兰州大学,2009
    [50]S.J.Pearton, Y.D.Park,C.R.Abernathy, M.E.Overberg, G.T.Thaler, J. Kim, F. Ren, J.M.Zavada, and R.G. Wilson. Ferromagnetism in GaN and SiC doped with transition metals. Thin Solid Film,2004,447-448:493-501
    [51]K.Sato and H.K. Yoshida. Material design of GaN-based ferromagnetic diluted magnetic semiconductors. Jpn. J. Appl. Phys.2001,40:L485
    [52]R.Q. Wu, G. W. Peng, L.Liu, Y.P. Feng, Z.G. Huang and Q.Y. Wu. Cu-doped GaN:a dilute magnetic semiconductor from first-principles study. Appl. Phys. Lett.,2006,89:062505
    [53]杨琴.Cu掺杂GaN基稀磁半导体的第一性原理研究[硕士论文].上海,华东师范大学,2011
    [54]M.L.Reed, M.K.Ritums, H.H.Stadelmaier, C.A.Parker, S.M.Bedair, and N.A.E.Masry. Room temperature magnetic (Ga,Mn)N:a new material for spin electronic devices. Mater. Lett., 2001,51:500-503
    [55]H.Hori, S.Sonoda, T.Sasaki, Y.Yamamoto, S.Shimizu, K.Suga, and K.Kindo. High-T。 ferromagnetism in diluted magnetic semiconductiong GaN:Mn films. Phys. B,2002,324: 142-150
    [56]K.H.Ploog, S.Dhar, and A.Trampert. Structural and magnetic properties of (Ga,Mn)N layers grown on SiC by reactive molecular beam epitaxy. J. Vac. Sci. Teehnol. B,2003,21:1756
    [57]M.Zajac, J.Gosk, M.Kamiska, A.Twardowski, T.Szyszko, and S.Podsiadlo. Paramagnetism and antiferromagnetic d-d coupling in GaMnN magnetic semiconductor. Appl. Phys. Lett., 2001,79:2432
    [58]X.G.Cui, Z.K.Tao, R.Zhang, X.Li, X.Q.Xiu, Z.L.Xie, S.L.Gu, P.Han,Y.Shi, and Y.D.Zheng. Structural and magnetic properties in Mn-doped GaN grown by metal organic chemical vapor Deposition. Appl. Phys. Lett.,2008,92:152116
    [59]J.S.Lee, J.D.Lim, Z.G.Khim, Y.D.Park, S.J.pearton, and S.N.Chu. Magnetic and structural properties of Co, Cr,V ion-implanted GaN. J. Appl. Phys.,2003,93:4512-4516
    [60]S.E.Park, H.J.Lee, Y.C.Cho, S.Y.Jeong, C.R.Cho, and S.Cho. Room-temperature ferromagnetissm in Cr-dopped GaN single crystals. Appl. Phys. Lett.,2002,80:4187-4189
    [61]Y.K.Zhou, M.Hashimoto, M.Kanamura, and H.Asahi. Room temperature ferromagnetism in Ⅲ-Ⅴ-based diluted magnetic semiconductor GaCrN grown by ECR molecular-Beam epitaxy. J. Supercond:Incorporating Novel Magnetism,2003,16:37-40
    [62]R.T.Huang, C.F.Hsu, J.J.Kai, F.R.Chen, and T.S.Chin. Room-temperature diluted magnetic semicoductors p-(Ga,Ni)N. Appl. Phys. Lett.,2005,87:202507
    [63]J.H.Lee, I.H.Choi, S.Shin, S.Lee, J.Lee, C. Whang, S.C.Lee, K.R.Lee, J.H.Baek, K.H.Chae, and J.Song. Room-temperature ferromagnetism of Cu-implanted GaN. Appl. Phys. Lett., 2007,90:032504
    [64]H.K.Seong, J.Y.Kim, J.J.Kim, S.C.Lee, S.R.Kim, U.Kim, T.E.Paek, and H.J.Choi. Room-temperature ferromagnetism inCu doped GaN nanowires. J. Nano. Lett.,2007,7: 3366-3371
    [65]X.L.Yang, Z.T.Chen, C.D.Wang, Y.Zhang, X.D.Pei, Z.J.Yang, G.Y.Zhang, Z.B.Ding, K. Wang, and S.D.Yao. Structural, optical, and magnetic properties of Cu-implanted GaN films. J. J. Appl. Phys.,2009,105:053910
    [1]吴兴惠,项金钟.现代材料计算与设计教程.北京:电子工业出版社,2002
    [2]美国国家研究委员会,中国航空工业总公司航空信息中心.90年代的材料科学与材料工程:在材料时代保持竞争力.北京:中国航空工业总公司航空信息中心,1992
    [3]D.罗伯,吴兴惠,项金钟译.计算材料学.北京:化学工业出版社,2002
    [4]曾谨言.量子力学.北京:科学出版社,2000
    [5]A.Szabo and N.S.Ostlund. Modern quantum chemistry. Dover Publications, Inc., Mineola, New York,1996
    [6]R.G.Parr and W.T.Yang. Density-functional theory of atoms and molecules. Oxford University Press, New York,1989
    [7]M.Born and K.Huang. Dynamical theory of crystal lattices. Oxford University Press, Oxford, 1954
    [8]D.R.Hartree. The wave mechanics of an atom with a non-coulomb central field. Part Ⅰ-Theory and Methods. Proc. Com. Phil. Soc.,1928,24:89
    [9]V.Fock. Observation of periodic oscillations in magnetization-induced second harmonic generation at the Mn/Co interface. Phys. Rev. B,2007,75:012401
    [10]R.McWeeny. Methods of molecular quantum mechanics. Academic Press, London,1989
    [11]徐光宪,黎乐民,王德民.量子化学(中册).北京:科学出版社,1985
    [12]唐敖庆,杨忠志,李前树.量子化学.北京:科学出版社,1982
    [13]J.B.Foresman, M.Head-Gordon, J.A.Pople and M.J.Frisch. Toward a systematic molecular orbital theory for excited states. J.Chem.Phys.,1992,96:135-149
    [14]C.Moller and M.S.Plesset. Note on an approximation treatment for many-electron systems. Phys. Rev.,1934,46:618
    [15]谢希德,陆栋.固体能带理论.上海:复旦大学出版社,2007
    [16]W.Kohn. Electronic structure of matter-wave functions and density functions. Rev. Mod. Phys.,1998,71:1253
    [17]H.Thomas. Proc. Camb. Phil. Soc.,1927,23:542
    [18]E.Fermi. Accad. Naz. Lincei,1927,6:602
    [19]P.Hohenberg and W.Kohn. Inhomogeneous electron gas. Phys. Rev.,1964,136:B864
    [20]W. Kohn and L. J. Sham. Self-consistent equation including exchange and correlation effects. Phys. Rev.,1965,140:1133-1138
    [21]W. Kohn. Electronic structure of matter. Rev. Mod. Phys.,1999,71:1253
    [22]J. P. Perdew and K. Burke. Comparison shopping for a gradient-corrected density functional. Int. J. Quant. Chem.,1996,57:767-808
    [23]J.L.Labanowski and J.W.Andzelm. Density functional methods in chemistry. Springer-Verlag, New York, 1991,45-77
    [24]J.P.Perdew and Zunger. Self-interaction correction to density-functional approximations for many-electron systems. Phys.Rev.B,1981,23:5079-5084
    [25]J.P.Perdew. Accurate density functional for the energy:real-space cut off of the gradient expansion for the exchange hole. Phys.Rev.Lett.,1985,55:1668-1665
    [26]J.P.Perdew. Density-functional approximation for the correlation energy of inhomogeneous electron gas. Phys.Rev.B,1986,33:8824:8822
    [27]J.P.Perdew and Y.Wang. Accurate and simple analytic representation of the electron-gas correlation energy. Phys.Rev.B,1992,45:13244-13249
    [28]J.P.Perdew and K.Burke. Comparison shopping for a gradient-corrected density functionsl. Int.J.Quant.Chem.,1996,57:767-808
    [29]T.Asada and K.Terakura. Cohesive properties of iron obtained by use of the generalized gradient approximation Phys.Rev.B,1992,46:13599
    [30]L.F.Yuan, J.L.Yang, Q.X.Li and Q.S.Zhu. First-principles investigation for M(CO)n/Ag(110)(M=Fe, Co, Ni, Cu, Zn and Ag; n=1,2) systems:geometries, STM images, and vibrational frequencies. Phys.Rev.B, 2002,65:035415
    [31]D.R.Hamann, M.Schluter and C.Chiang.Norm-conserving pseudopotentials. Phys.Rev.Lett.,1979,43: 1494-1497
    [32]D.Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys.Rev.B, 1990,41:7892-7895
    [33]P.E.Blochl. Projector augmented-wave method. Phys.Rev.B,1994,50:17953-17979
    [34]G.Kresse and D.Joubert. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys.Rev.B,1999,59:1758-1775
    [1]陆栋,蒋平,徐至中.固体物理学.上海:上海科学技术出版社.2003
    [2]陈捷.硅基光电子材料和稀磁半导体材料的计算设计[博士论文].厦门:厦门大学,2007
    [3]S.F. Bent. Organic functionaliation of group-Ⅳ semiconductor surfaces:principles, examples, applications, and prospects. Surf. Sci.,2002,500:879-903
    [4]T. Hashizume, S. Heike, M.I. Lutwyche, S. Watanabe, and Y. Wada. Atom structures on the Si(100) surface. Surf. Sci.,1997,386:161-165
    [5]J.A. Kubby, J.J. Boland. Scanning tunneling microscopy of semiconductor surfaces. Surf. Sci. Rep.,1996,26:61-204
    [6]L. Gavioloi, M.G. Betti, C. Mariani, A.I. Shkrebtii, R.D. Sole, C. Cepek, A. Goldoni, and S. Modesti. Dynamics of the Si(100) surface. Surf. Sci.,1997,377-379:360-364
    [7]C.B. Duke. Semiconductor surface reconstruction:the structural chemistry of two-dimensional surface compounds. Chem. Rev.,1996,96:1237-1259
    [8]J. Yoshinobu. Physical properties and chemical reactivity of the buckled dimer on Si(100). Prog. Surf. Sci.,2004,77:37-70
    [9]A. Ramstad, G. Brocks, and P.J. Kelly. Theoretical study of the Si(100) surface reconstruction. Phys. Rev. B,1995,51:14504
    [10]O. Paz, A.J.R. Silva, J.J. Saenz, and E. Artacho. Electron correlation in the Si(100) surface. Surf. Sci.,2001,482-483:458-463
    [11]A. Markovits, L. Favaro, and C. Minot. Hartee-Fock study of the Si(100) reconstruction. J. Molecular Structure,1999,458:171-189
    [12]K. Sagisaka, D. Fujita, G. Kido, N. Koguchi. Temperature dependence of the phase manipulation feasibility between c(42) and p(22) on the Si(100) surface. Surf. Sci.,2004, 566-568:767-771
    [13]R.E. Schlier, H.E. Farnsworth. Stucture and adsorption characteristics of clean surfaces of germanium and silicon. J. Chem. Phys.,1959,30:917-925
    [14]许振嘉.近代半导体材料的表面科学基础.北京:北京大学出版社,2002
    [15]朱林山.低能Si与Si(001)21重构表面相互作用过程的分子动力学模拟[硕士论文].贵州:贵州大学,2007
    [16]J.A. Appelbaum, G.A. Baraff, and D.R. Hamann. The Si(100) surface. Ⅱ. A theoretical study of the relaxed surface. Phys. Rev. B.,1975,12:5749
    [17]J.A.Appelbaum, G.A. Baraff, and D.R. Hamann. The Si(100) surface. Ⅲ surface reconstruction. Phys. Rev. B.,1976,14:588
    [18]J.A.Appelbaum, G.A. Baraff, and D.R. Hamann. Si(100) surface reconstruction: spectroscopic selection of a structural model. Phys. Rev. Lett.,1975,35:729-732
    [19]G.P. Kerker, S.G. Louie, and M.L.Cohen. Electronic structure of the ideal and reconstructed Si(001) surface. Phys.Rev.B.,1978,17:706
    [20]D.J. Chadi. Atomic and electronic structures of reconstructed Si(100) surfaces. Phys. Rev. Lett,1979,43:43-47
    [21]G.P. Srivastava. Geometry, electrons, phonons and reactions on Si(001) surfaces. Comput. Phys. Commun.,2001,137:143-162
    [22]M.T. Yin, M.L. Cohen. Theoretical determination of surface atomic geometry:Si(001)-2×1. Phys. Rev. Lett.,1981,24:2303-2306
    [23]W.S. Yang, F.Jona, and P.M. Marcus. Atomic structure of Si{001}2×1. Phys. Rev. B,1983,28: 2049-2059
    [24]P. Kruger, J. Pollmann. Dimer reconstruction of diamond, Si, and Ge(001) surfaces. Phys. Rev. Lett,1995,74:1155-1158
    [25]S.B. Healy, C. Filippi, P. Kratzer, E. Penev, and M.Scheffler. Role of electronic correlation in the Si(100) reconstruction:a quantum Monte Carlo study. Phys. Rev. Lett,2001,87:016105
    [26]R.M. Tromp, R.J. Hamers, and J.E. Demuth. Si(001) dimer structure oberved with scanning tunneling microscopy. Phys. Rev. Lett.,1985,55:1303-1306
    [27]R.J. Hamers, R.M. Tromp, and J.E. Demuth. Scanning tunneling microscopy of Si(001). Phys. Rev. B,1986,34:5343-5357
    [28]R.A. Wolkow. Direct observation of an increase in buckled dimers on Si(001) at low temperature. Phys. Rev. Lett,1992,68:2636-2639
    [29]L. Perdigao, D. Deresmes, B. Grandidier, M, Dubois, C. Delerue, G. Allan, and D. Stievenard. Semiconducting surface reconstructions of p-type Si(100) substrates at 5K. Phys. Rev. Lett.,2004,92:216101
    [30]K. Hata, S. Yoshida, and H. Shigekawa. p(2×2) phase of buckled dimers of Si(100) observed on n-type substrates below 40K by scanning tunneling microscopy. Phys. Rev. Lett.,2002,89: 286106
    [31]G.L. Lay, A. Cricenti, C. Ottiaviani, P. Perfetti, T. Tanikawa, I. Matsuda, and S. Hasegawa. Evidence of asymmetric dimers down to 40K at the clean Si(100) surface. Phys. Rev. B, 2002,66:153-317
    [32]M. Ono, A. Kamoshida, N. Matsuura. E. Ishikawa. T. Eguchi, and Y. Hasegawa. Dimer buckling of the Si(001)2×1 surface below 10K observed by low-temperature scanning tunneling microscopy. Phys. Rev. B,2003.67:201306
    [33]K. Sagisaka, D. Fujita, and G. Kido. Phase manipulation between c(4×2) and p(2×2) on the Si(100) surface at 4.2K. Phys. Rev. Lett,2003,91:146103
    [34]F.D. Murnaghan. The compressibility of media under extreme pressures. P. N. A. S..1944,30:244-247
    [35]聂锦兰.金刚石和铀表面吸附特性的第一性原理研究[博士论文].成都,电子科技大学.2005
    [36]A.R. Brown, D.J. Doren. Energetics of silicon hydirdes on the Si(100)-(2×1) surfcae. J. Chem.Phys.,1998,109:2442
    [37]A.R. Brown, D.J. Doren. Dissociative adsorption of silane on the Si(100)-(2×1) surfcae. J. Chem.Phys.,1999,110:2643
    [38]郭连权,刘嘉惠,宋开颜,张金虎,马贺,武鹤楠,李大业.晶体Si能带的密度泛函及第一性原理计算.沈阳工业大学学报,2009,31:296-305
    [39]N. Roberts, R.J. Needs. Total energy calculations of dimer reconstructions on the silicon (001) surface. Surf. Sci.,1990,236:112-121
    [40]K. Inoue, Y. Morikawa. K. Terakura. and M. Nakayama. Order-disorder phase transition on the Si(001) surface:critical role of dimer defects. Phys. Rev. B,1994,49:14774-14777
    [41]Q. Liu, R. Hoffmann. The bare and acetylene chemisorbrbed Si(001) surface, and the mechanism of acetylene chemisorption. J. Am. Chem. Soc.,1995,117:4082-4092
    [42]G.J. Hutchings. Vapor phase hydrochlorination of acetylene:Correlation of catalytic activity of supported metal chloride catalysts. J. Catal.1985,96:292
    [43]M. Haruta, T.Kobayashi, H.Sano, and N.Yamada. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0℃. Chem. Lett.,1987,16:405
    [44]M.Haruta, N.Yamada, T.Kobayashi, and S.lijima. Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide. J. Catal.,1989,115:301
    [45]王芳.Au及Au-Pt贵金属纳米材料催化性能的理论研究[博士论文].山东,山东大学,2007
    [46]M.K. Weilmeier, W.H. Rippard, R.A. Buhrman. Ballistic electron transport through Au(111)/Si(111) and Au(111)/Si(100) interfaces. Phys. Rev. B,1999,59:R2521-R2524
    [47]H. Minoda, K.Yagi, F.J. M. Heringdorf, A. Meier, D. Kahler, and M. Hoegen. Gold-induced Faceting on a Si(001) vicinal surface:Spot-profile-analyzing LEED and reflection-electron-microscopy study. Phys. Rev. B,1999,59:2363-2375
    [48]A. Blauarmel, M. Brauer, V. Hoffmann, and M.Schmidt. Ballistic-electron emission microscopy and internal photoemission in Au/Si-structures — a comparison. Appd. Surf., 2000,166:108-112
    [49]W.C.A.N. Ceelen, M. Ridden, B. Moset, A.W. D. Gon, and H.H. Brongersma. Morphology and composition of Au films on Si(100). Surf. Sci.,1999,430:146-153
    [50]Z.H. Lu, T.K. Sham, K.Griffiths, and P.R. Norton. Studies of Au interaction on Si (100) by photoemission spectroscopy. Solid State Commun.,1990,76:113-116
    [51]T. Narusawa, K. Kinoshita, W.M. Gibson, and A.Hiraki. Structure study of Au-Si interface by MeV ion scattering. J. Vac. Sci. Technol.,1981,18:872
    [52]F.Chiaravalloti, D. Riedel, and G.Dujardin. STM topography and manipulation of single Au atoms on Si(100). Phys. Rev. B,2009,79:245431
    [53]P. Pyykko. Theoretical chemistry of Gold. Angew. Chem. Int. Ed.,2004,43:4412-4456
    [54]Xiangfeng Duan, Yu Huang, Ritesh Agarwall & Charles M. Lieberl。Single-nanowire electrically driven lasers. Nature,2003,421:241-245
    [55]D. Shvydka, J. Drayton, A. D. Compaan, and V. G. Karpov, Piezo-effect and physics of CdS based thin-film photovoltaics. Appl. Phys. Lett.,2005,87:123505.
    [56]D.Routkevitch, T. Bigioni, M.Moskovitc and J. M. Z Xu. Electrochemical fabrication of CdS nanowire arrays in porous anodic aluminum oxide templates. Phys. Chem.,1996,100: 14037-14047
    [57]Y. W.Wang, G.N. Meng, L.D.Zhang, C.H.Liao and J.Zhang. Catalytic growth of large-scale single-crystal CdS nanowires by physical evaporation and their photoluminescence. Chem. Mater.,2002,14:1773-1777
    [58]J.H.Zhan, X.G.Yang, D.W.Wang, D.S.Li, Y.N.Xia and Y.T.Qian. Polymer-controlled growth of CdS nanowires. Adv. Mater.,2000,12:1348-1351
    [59]C.N.R.Rao, A.Gorindaraj, F.L.Deepark and N.A.Gunari. Surfactant-assisted synthesis of semiconductor nanotubes and nanowires. Appl. Phys, Lett.,2001,78:1853
    [60]M.W.Shao, F.Xu, Y.Y.Peng, J.Wu, Q.Li, S.Y.Zhang and Y.T.Qian. Microwave-templated synthesis of CdS nanotubes in aqueous solution at room temperature. New J. Chem.,2002, 26:1440-1442
    [61]Q.Li, C.R.Wang. Fabrication of Zn/ZnS nanocable heterostructures by thermal reduction/sulfidation. Appl. Phys. Lett,2003,82:1398-1401
    [62]Z.W.Pan, Z.R.Dai and Z.L.Wang. Nanobelts of Semiconducting Oxides. Science, 2001,291:1947-1949
    [63]Y.Iwao and S.J.Hajime. Vapor phase growth of alumina whiskers by hydrolysis of aluminum fluorideo J. Cryst. Growth,1978,45:511-516
    [1]Y. Matsumoto, M. Murakami, T. Shono, T. Hasegawa, T. Fukumura, M. Kawasaki, P. Ahmet, T. Chikyow, S.Y. Koshihara, and H. Koinuma. Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science,2001,291:854-856
    [2]W. Prellier, A. Fouchet, and B. Mercey. Oxide-diluted magnetic semiconductors:a review of the experimental status. Phys. Conden. Matt.,2003,15:R1583
    [3]M. Berclu, T.G. Rappoport, and B. Janko. Manipulating spin and charge in magnetic semiconductors using superconducting vortices. Nature,2005,435:71
    [4]X.F. Wang, X.S. Chen, R.B. Dong, Y. Huang, and W. Lu. Ferromagnetism in carbon-doped ZnO films from first-principle study. Phys. Lett. A,2009,373:3091-3096
    [5]H. Pan, J.B. Yi, L. Shen, R.Q.Wu, J.H.Yang, J.Y. Lin, Y.P. Feng, J. Ding, L.H. Van, and J.H. Yin. Room-Temperature Ferromagnetism in Carbon-Doped ZnO. Phys. Rev. Lett.,2007,99:127201
    [6]X.J. Ye, W. Zhong, M.H. Xu,X.S. Qi, C.T.Au, and Y.W. Du. The magnetic property of carbon-doped TiO2. Phys. Lett. A,2009,373:3684-3687
    [7]L. Shen, R.Q. Wu, H. Pan, G.W. Peng, M. Yang, Z.D. Sha, and Y.P. Feng. Mechanism of ferromagnetism in nitrogen-doped ZnO:First-principle calculations. Phys. Rev. B,2008,78:073306.
    [8]C.F. Yu, T.J. Lin, S.J. Sun, and H. Chou. Origin of ferromagnetism in nitrogen embedded ZnO:N thin films. Phys. D,2007,40:6497-6500
    [9]P. Dev, Y. Xu, and P. Zhang. Defect-induced intrinsic magnetism in Wide-Gap III Nitrides. Phys. Rev. Lett.,2008,100:117204
    [10]T.L. Makarova, B. Sundqvist, R. Hohne, R. Hohen, P. Esquinazi, Y. Kopelevich, P. Scharff, V.A. Davydov, L.S. Kashevarova, and A.V. Rakhmania. Magnetic carbon. Nature,2001,413:716-718
    [11]J.M.D. Coey, M. Venkatesan, C.B. Fitzgerald, A.P. Douvalis, and I.S.Sanders. Ferromagnetism of a graphite nodule from the Canyon Diablo meteorite. Nature,2002,420:156-159
    [12]K. Kusakabe, M. Maruyama. Magnetic nanographite. Phys. Rev. B,2003,67:092406
    [13]J.L.Labanowski and J.W.Andzelm. Density functional methods in chemistry. Springer-Verlag, New York,1991,45-77
    [14]R.O. Jones, O. Gunnarsson. The density functional formalism, its applications and prospects. Rev. Mod. Phys.,1989,61:689
    [15]H.J.Monkhorst, J.D.Pack. Special points for Brillouin-zone integrations. Phys. Rev. B,1976,13:13-17
    [16]李拥华,徐彭涛,潘海滨,徐法强,谢长坤.GaN(10-10)表面结构的第一性原理计算.物理学报,2005,54:317-322
    [17]Perdew J P. Atoms, molecules, solids and surfaces:Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B,1992,46:6671
    [18]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Phys. Rev Lett.,1996,77:3865
    [19]H. Ohno, A. Shen, F. Matsukura, A. Oiwa, A. Endo, S. Katsumoto, and Y. lye. (Ga,Mn)As:a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett.,1996,69:363-366
    [20]H. Ohno. Making nonmagnetic semiconductors ferromagnetic. Science,1998.14:951-956

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700