用户名: 密码: 验证码:
轴向飞行梁动态特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文主要对轴向飞行梁的振动特性进行了研究,按飞行速度划分为低速和高速两种情况。首先分析了轴向飞行梁在低速时的动态特性,在理论上分别采用牛顿第二定律和Hamilton原理推导了轴向飞行梁的横向振动微分方程,采用Galerkin法将其离散而得到常微分方程,对梁的动态特性进行分析计算,结果表明梁的固有频率随着飞行速度的增加不断降低,并求出梁的临界失稳速度。
     试验方面以箭为研究对象对其进行模态参数识别。采用了两种试验方法,一是采用动态分析仪Agilent 35670测得箭的频响函数,然后用I-DEAS软件识别出箭的前三阶模态。二是采用高速摄像机记录箭的飞行过程,对箭的的飞行进行定性和定量分析并根据拍摄结果算出箭的第一阶固有频率。采用有限元模拟求解箭的前三阶模态,与试验结果基本一致。
     其次分析了轴向飞行梁在高速时的动态特性,主要研究了轴向飞行梁在高速飞行情况下,由于气动加热引起的高温效应对结构振动特性的影响。介绍了温度场和热应力场的有限元方法,并将温度场等效为热载荷,用弹性力学的处理方法求解温度场对应的热应力场。其次,将热应力作为结构的一种预应力,推导由预应力引起的刚度矩阵修正。结合金属材料热物理参数随温度变化的一般规律,构造结构的热刚度,应用有限元模拟方法得到结构的固有频率。
     研究结果表明,升温导致的热应力以及材料属性的改变都会改变结构的固有频率,其中,后者的效果更显著;两者的综合作用下,结构的固有频率有下降趋势,且高阶固有频率比低阶固有频率下降得快。
In this paper, vibration characteristics of the transverse oscillation of the axially flying beam is investigated, according to the flying speed,we divide the question into low and high speed conditions.
     Firstly, dynamic characteristics of the axially flying beam at low speed is investigated.The differential equation of transverse motion of the beam is derived by Newton’s second law and Hamilton’s principle Newton’s second law.Then we apply the Galerkin method to truncate the partial differential equation into a set of ordinary differential equations, and the effect of the axially flying speed on the first order natural frequency of the beam is researched. It is found that the first order natural frequency decrease as the axial velocity increase, so there is a critical velocity of the axially flying beam.
     Then we take the arrow as the research object to make experiment to analyze the modal parameter of it.There are two methods in our experiment.In the first method,we measure the frequency response function by means of the dynamic signal analyzer 35670, then identyfy the first three order modes by means of I-DEAS software.In the second method, we record the flying process of the arrow with the help of high-speed camera, and make qualitative analysisand and quantitative analysis to it. According to the record,we can get the first order natural frequency.With the help of MSC.Patran/Nastran software,we make simulation of the arrow and get the first three modes,and the results keep consistent with the experiment
     Secondly, dynamic characteristics of the axially flying beam at high speed is investigated. The vibration characteristics,especially thermal vibration characteristic of the beam under aerodynamic heating is analyzed. the finite element method is used to analyze the temperature field and thermal stress. The temperature effect which has been taken as 'thermal load' forced on the body, then, such thermal stress is settled as general elasticity mechanics question. Secondly, the thermal stress is taken as‘pre-stress’, then, deduce extra stiffness matrix caused by pre-stress.Considered the mechanical property of the material changed with thermal, get the new system thermal stiffness and the nature frequency of the structure.
     By means of FEM method, we get the conclusions as followed: thermal stress and the mechanical property of the material variety can send the nature frequency down; the latter effect stronger; the nature frequency is decreased by the two factors, the higher the nature frequency is, the more it decrease.
引文
[1] Wickert J A,Mote C D Jr.Current research on the vibration and stability of axially-moving materials[J].The Shock and Vibation Digest.1998,20:3~13.
    [2] Abrate A S.Vibation of belts and belt drives[J].Mechanism and Machine Theory.1998,27:645~659.
    [3]陈立群,Jean W.Z.轴向运动弦线的纵向振动及其控制[J].力学进展.2006,31(4):535~546.
    [4]王建军,邹西峰,李其汗.轴向移动系统的参数振动问题研究进展[J].应用力学学报.2006, 20(4):33~36.
    [5]杨晓东,陈立群.变速度轴向运动粘弹性梁的动态稳定性[J].应用数学和力学.2007,26:905~910.
    [6]王洪纲.热弹性力学概论[M].北京:清华大学出版社,2008:41~85.
    [7]姜任秋.热传导、质扩散与动量传递中的瞬态冲击效应[M].北京:科学出版社,2005:27~34.
    [8]周校先.工程中瞬态温度场的有限元分析[J].华南理工大学学报(自然科学版),2004,22(1):23~26.
    [9]吴志刚,惠俊鹏等.高超声速下翼面的热颤振工程分析[J].北京航空航天大学学报,2006(3):270~273.
    [10] McNamara,Peretz P.Friedmann,etc.,Three-dimensional aeroelastic and areothermoelastic behavior in hypersonic flow[C].AIAA Paper,2005~2175.
    [11] Bisplinghoff R L,Ashley H.Principle of Areoelasticity[J].Journal of Sound and Vibration,2006,179(2):289~312.
    [12]杨自春.受热复合材料层合板的非线性热振动一理论及数值分析[J].复合材料学报,2006,Vo117(1):24~30.
    [13]陈文俊.气动加热对飞行器气动弹性特性的影响[J].现代防御技术,2004(3):21~28.
    [14]杨炳渊,史晓鸣,梁强.高超声速有翼导弹多场耦合动力学的研究和进展(上)[J].强度与环境,2008年,第35卷第5期:55~63.
    [15]张志成,主编.高超声速气动热和热防护[M].北京:国防工业出版社,2007:78~79.
    [16]范绪箕.气动加热与热防护系统[M].北京:科学出版社,2007:65~72.
    [17]姜贵庆.高速气流传热与烧蚀热防护[M].北京:国防工业出版社,2009:32~35.
    [18]史晓鸣,杨炳渊.大攻角翼面超声速热颤振分析[J].上海航天,2009,23(4):14~16.
    [19]张伟伟,夏巍,叶正寅.一种高超音速热气动弹性数值研究方法[J].工程力学,2006,23(2):22~24.
    [20] Nelson H M.Transverse vibration of a moving trip[J].Journal of Sound and Vibration.1999,65(3):381~389.
    [21] Simpson A.Transverse modes and frequencies of beams translating between fixed end supports[J].Journal of Mechanical Engineering Science.1999,15(3):159~164.
    [22] Wickert J A, Mote C D Jr.Classical vibration analysis of axially-moving continua[J].Journal of Applied Mechanics.1996,57(3):738~744.
    [23] Alspaugh D W.Torsional vibration of a moving band[J].Journal of the Franklin Institute.1997,283(4):328~338.
    [24] Naguleswaran S,Williams C J H.Lateral vibration of band-saw, pulley belts and thelike[J].International Journal of Mechanical Sciences.1999,10:239~250.
    [25] Wu W Z, Mote C D Jr. Parametric excitation of an axially moving band by periodic edge loading[J].Journal of Sound and Vibration.1996,110:27~39.
    [26] Parker R G,Lin Y.Parametric instability of axially moving media subjected multifrequency tension and speed fluctuations[J].Journal of Applied Mechanics.2001,68:49~57.
    [27] Kozic P, Paviovic R.Stability of a thin moving elastic strip subjected to random parametric excitations[J].Journal of Sound and Vibration.2004,206(2):280~285.
    [28] Ozkaya E,Pakdemirli M. Vibrations of an axially accelerating beam with small flexural stiffness[J].Journal of Sound and Vibration.2000,234(3):521~535.
    [29] Lee S Y,Mote C D Jr.A generalized treatment of the energetics of translating continua,part II:beams and fluid conveying pipes.2001,204(5):735~753.
    [30] Tabarrok B,Leech C M,Kim Y I. On the dynamics of an axially moving beam[J].Journal of the Franklin Institute.2003,297(3):201~220.
    [31] Stylianou M,Tabarrok B.Finite element anlysis of an axially moving beam part I:time integration[J].Journal of Sound and Vibration.2004,178(4):433~453.
    [32] Fung R F,LuP Y.Non-linearly dynamic modeling of an axially moving beam with a tip mass[J].Journal of Sound and Vibration.1998,218(4):559~571.
    [33] AI-Bedoor B O, Kbulief Y A.An approximate analytical solution of beam vibration during axial motion[J].Journal of Sound and Vibration.1996,191(2):159~171.
    [34]李山虎,杨靖波,黄清华等.轴向运动悬臂梁的独立模态振动控制-I近似理论分析[J].应用力学学报.2006,19(1):35~38.
    [35] Marynowski Krzystof,Kapitaniak Tomasz.Kelvin-Voigt vresus Burgers internal damping in modeling of axially moving viscoelastic web[J].International Journal of Non-Linear Mechanics.2002,37:1147~1161.
    [36] Mote CD Jr.A study of band saw vibrations[J].Journal of the Franklin Institute,1999,279(6):430~444.
    [37] Ulsoy AG.Coupling between spans in the vibration of axially moving materials[J].Journal of Vibration,Acoustics,Stress and Reliability in Design,1999,108(2):207~212.
    [38] Stylianou M,Tabarrok M.Finite element analysis of anaxially moving beam,Part 1 time integration[J].Journal of Sound and vibaration,1994,178:433~453.
    [39] Oz HR.Determination of natural frequeneies and stability regions of axially Moving beams using artificial neural networks method[J].Journal of Sound and Vibration 2002,254(4):782~789.
    [40] Renshaw AA and Mote CDJr,Local stability of gyroscopic systems near vanishing eigenvalues[J].Journal of Applied Mechanics,2003,63(1):116~120.
    [41] Parker PG,On the eigenvalues and critical speed stability of gyroscopic continua[J].Journal of Applied Mechanics,1998,65:134~140.
    [42] Seyranian AP,Kliem W.Bifurcations of Eigenvalues of gyroscopic systems with parameters near stability boundaries[J].Journal of Applied Mechanics,2001,68(1):199~205.
    [43] Riedel CH and Tan CA(1998), Dynamic characteristics and mode localization of elastically constrained axially moving strings and beams[J].Journal of Sound and Vibration,215(3):455~473.
    [44] Al-jawi AAN,Pierre C,Ulsoy G.Vibration localization in band-wheel systems:theory and experiment[J].Journal of Sound and Vibration,2005,179(2):289~312.
    [45] Liu FC,Nonlinear vibration of beams[J].Aero-Astrodynamics Res And Dev Res Review, 2001,2(1):74~79.
    [46] Oz HR, Pakdemirli M and Ozkaya E,Transition behaviour from string to beam for an axially accelerating material[J].Journal of Sound and vibration,1998,215(3): 571~576.
    [47] Wang KW and Liu SP(1991),On the noise and vibration of chain drive systems[J].The Shock and Vibration Digest,23(4):8~13.
    [48] Wickert, JA. Non-linear Vibration of a traveling tensioned Beam[J].International Journal of Non-Linear Mechanics,1996,27(3):503~517.
    [49] Moon J and Wickert JA, Non-linear vibration of power transmission belts[J].Journal of Sound and Vibration,1997,200(4):419~431.
    [50] Chakraborty G,Mallik AK.Wave propagation in and vibration of a traveling beam with and without non-linear effects.Part I:Free vibration[J].Jounal of Sound and Ybration, 2005,236(2):277~290.
    [51] Pellicano F,Zirilli F.Boundary layers and non-linear vibrations in an axially moving beam[J].Journal of Non-Linear Mechanics,1997,33(4):691~711.
    [52] Pellicano F,Fregolent A,Bertuzzi A, Vestroni F.Primary and parametric non-linear resonances of a power transmission belt[J].Journal of Sound and vibration,2004,4(4):669~684.
    [53]齐丕骞.用高精度元分析受热箭形板翼颤振问题[R].629所资料,1999:78~80.
    [54]陈浩然,息志臣,贺晓东.复合材料层合板的热变形非线性分析[J].大连理工大学学报, 2005,12(3):26~28.
    [55]树学锋.简支圆板非线性热弹耦合振动的研究[J].工程力学学报,2000,17(2)97~102.
    [56] Huang N.N. and Tauchert T.R.Large deformation fantasy metric angle-ply laminates resulting from nonuniform temperature loading [J].Thermal Stresses,2002,11(9):287~297.
    [57]杨自春,李四平,黄玉盈.复合材料层合板壳的非线性热动态响应分析[J].计算力学学报,2007,14(1)52~54.
    [58]杨自春.受热复合材料层合板的非线性热振动一试验研究[J].复合材料学报,2007, 117(2):537~542.
    [59]吴晓,马建勋.正交异性矩形非线性的固有热振动[J].工程力学学报,2006,16(2):45~48.
    [60]张浙,刘登瀛.非傅里叶热传导研究进展[J].力学进展,2007,30(3):72~82.
    [61]邵红艳.结构温度场和热应力场的有限元法[C].西北工业大学硕士学位论文.2006:45~51.
    [62]沈守正.用有限元素(SRP)求解板的热颤振问题[R].航天八院八部资料,1998.
    [63] Spain C.V. Soistmann. D.L.and Linville T.W. Integration of thermal effects into finite element aerothernoelastic analysis with illustrative result Presented at Sixth National Aerospace Plane Technology Symposium[J].Journal of Sound and vibration.2005,11(3):57~65.
    [64]叶正寅,等.大攻角机翼非线性颤振分析方法[J].航空学报,2006,12(10):31~34.
    [65] Noor and Burton C.W.Computational models for high-temperature multilayered composite plates and shells[J].Journal of Sound and vibration,2006,45(10):51~55.
    [66] Reddy J.Nand Chandrashakhara K.Recent advances in the nonlinear analysis flaminatedcomposite plate sand shells[J].Shock and Vibration,1999,19(4):41~43.
    [67] Chang W.P.,Wan S.M.Thermo mechanically coupled nonlinear vibration of plates [J]. Shock and Vibration.1996,21(5):375~389.
    [68] Chang W.P.,Jen S.C. Nonlinear free vibration of heated orthotropic rectangular plate[J].Solid Structures,1996,22(3):267~281.
    [69]戴德成.矩形板的非线性热弹耦合振动[J].振动工程学报,2002,3(2):65~72.
    [70]戴德成.板的非线性热弹耦合振动—近似解析[J].应用力学学报,2002(2):63~70.
    [71]夏巍,杨智春.复合材料壁板热颤振的有限元分析[J].西北工业大学学报,2009,23(2):32~35.
    [72]张鹏.有限元法在热颤振计算中的应用[R].629所资料, RK1998:78~93.
    [73]李增文,等.某型号机翼热颤振分析[C].第八届全国空气弹性学术交流会会议论文集,2008:56~60.
    [74]蒋劲松,李秋彦,等.热气弹工程解决方案与应用[C].第九届全国空气弹性学术记录会会议论文集,2005:74~75.
    [75]巫景燕,李新民,黄建萍.用高速摄像系统测量桨尖运动轨迹[J].直升机技术,2006,7(4):21~25.
    [76]胡海昌.变分学[M].北京:中国建筑工业出版社,2008:20~26.
    [77]周传荣,包益民.在实验模态分析中如何消除附加质量和刚度对实模态参数的影响[J].实验力学,1990,3(1):14~17.
    [78]孔祥谦.热应力有限单元法分析[M].上海:上海交通大学出版社,2006:1~5
    [79]库克(Cook R.D.),有限元分析的概念和应用(第2版)[M].北京:科学出版社,2006:391~398.
    [80]徐志东,范子亮.金属材料的弹性模量随温度变化规律的唯象解释[J].西南交通大学学报,2003,9(2):87~92.
    [81]陈文俊.气动加热对飞行器气动弹性特性的影响[R].航天国防科技报告.1997:16~18.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700