用户名: 密码: 验证码:
螯合电极的制备及其对海水中铀的吸脱附过程的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了实现海水提铀的高效性、可控可循环性,本实验室制备了含有腈基基团、二茂铁基团及羧基基团的三元共聚物。然后以金属镍片为基体电极,依次以蘸涂的方法自组装上硅烷偶联剂(KH-550)、聚丙烯酸(PAA)及三元共聚物P(DPAAm-co-Fc-co-AA)制备薄膜电极;再用一定浓度的盐酸羟胺溶液进行功能化制备螯合电极。将螯合电极分别放在一定浓度的硝酸铀酰溶液和天然海水中进行吸附铀实验,并用电化学方法进行脱附。以傅立叶红外光谱对聚合物进行了表征;以循环伏安法讨论了电极的电化学行为;以电子扫描显微镜对电极表面进行表面形貌的表征。
     (1)采用组装方法制备P(DPAAm-co-Fc-co-AA)薄膜电极。以配比为V_(KH-550):V_(水):V_(乙醇) =1:1:18配制_(KH-550)溶液,用冰乙酸调节溶液pH=5.5,用电导率测定法确定了_(KH-550)溶液的最佳水解时间为60h。实际实验中,通过电镜观察得到V_(KH-550):V_(水):V_(乙醇)的最佳配比为1:1:100,镍片的铬酸腐蚀液V_(水):V_(浓硫酸):m_(重铬酸钾)最佳配比为90:10:1。研究得出镍片在_(KH-550)溶液中的最佳组装时间为1.5min,在PAA/DMF溶液中的较好蘸涂组装时间为35min;在P(DPAAm-co-Fc-co-AA)/ DMF溶液中的较好蘸涂组装时间为30min。
     (2)以螯合电极为工作电极,不锈钢电极为对电极,甘汞电极为参比电极,测定螯合电极在不同的支持电解质中的电化学行为;螯合电极在pH=7的磷酸盐缓冲溶液中表现出较好的电化学活性;在海水中吸附铀后螯合电极的脱附电压为0.72V,在硝酸铀酰溶液中吸附铀后的螯合电极的脱附电压为0.88V。
     (3)螯合电极对铀的吸附分为静电吸附和螯合吸附,并以螯合吸附为主,研究得到螯合电极吸附等温方程为:Γ_t =2.96×10~(-2)c~(0.37)。
     (4)螯合电极对天然海水中铀的吸附过程中,8天后达到吸附平衡,平衡吸附量为8.9mgU·g~(-1);在5℃-25℃温度范围内,吸附量随着温度的上升呈上升趋势;温度对吸附速率的影响符合Arrhenius公式:k=0.11exp(-37.20/RT)。
     (5)通过电子扫描显微镜观察,实验室制备的螯合电极吸附铀前后形貌有较大的变化,吸附铀的效果较好。
Terpolymer with N,N’-Dipropionitrile acrylamide (DPAAm) / acrylic acid(AA)/ ferrocene(Fc)were synthesized. KH-550, PAA and Poly(DPAAm-co-Fc-co- AA)were coated on the nickel by self-assembly in turn.Then the coating was reacted with hydroxylamine hydrochloride directly to make chelating electrode which contained amidoxime-groups. Chelating electrodes were placed in a certain concentration of uranyl nitrate solution to the adsorption of uranium experiment,and others were placed in seawater to the adsorption of uranium experiment, the desorption was by electrochemical methods. The composition of the copolymer was measured by FT-IR, the electrochemical behavior of the chelating electrode was discussed by cyclic voltammetry, and surface morphology of the electrodes were characterized by SEM.
     (1)Film electrodes containning P(DPAAm-co-Fc-co-AA) were prepared firstly.Solution of _(KH-550) was prepared with volume ratio of _(KH-550), H2O and C2H5OH was 1:1:18, pH was adjusted to 5.5 by glacial acetic acid,then the hydrolyzing time was detemined by conductivity meter. It was about 60h in room temperature. In actual experiment , V_(KH-550):V_(water):V_(ethanol)=1:1:100 was the best ratio by SEM, and the best ratio of chromic acid etching solution was V_(water):V_(sulfuric acid):m_(potassium dichromate)=90:10:1. The corrosion time in chromic acid etching solution was 30min. The assembly time in solution of KH-550 was 1.5 min, 35min in solution of PAA/DMF, 30min in solution of P(DPAAm-co-Fc-co-AA)/DMF.
     (2)With chelating electrodes as work electrodes, stainless steel electrodes made in the lab as counter electrodes, calomel electrodes as reference electrodes and phosphate buffer solutionas(pH=7) supporting electrolyte, the chelating electrodes showed good electrochemical activities. Desorption voltage of the electrode adsorbed uranium in seawater was 0.72V, and desorption voltage of the electrode adsorbed uranium in uranyl nitrate solutionwas 0.88V.
     (3)Adsorption of uranium on the chelating electrodes contained two ways: electrostatic adsorption and chelating adsorption, and adsorption capacity of chelating electrodes was determined by the latter. Adsorption isotherm of chelating electrodes was:Γ_t =2.96×10~(-2)c~(0.37).
     (4)The adsorption of uranium in sea water on the chelating electrodes reached equilibrium after 8 days,and equilibrium adsorption capacity was 8.9mgU·g~(-1). Adsorption capacity increased as the temperature rise in 5℃to 25℃, Arrhenius equation: k=0.11exp(-37.20/RT).
     (5) The surface of the chelating electrode was changed greatly in morphology characterized by SEM in front and behind of adsorption of uranium ,and the adsorption of uranium on the chelating electrodes had achieved good results.
引文
[1]郭志峰,国内外铀资源动态分析,核电论坛,2007,82(6):16-19
    [2]徐柏叶,大海-核燃料的仓库,农村电气化,2000,(3):45-48
    [3]李秋萍,2010年世界核电装机容量及对铀的需求,国外核新闻,1997.11-11
    [4]胡兴军,周杰,屈平,我国核电发展进入新时代.上海电力,2008,(5):470-474
    [5] Seko Noriaki,Katakai Akio,Hasegawa Shin, et.al,Aquaculture of uranium in seawater by a fabric-adsorbent submerged system,Nuclear Technology,2003,144(2): 274-278
    [6]王国强,冯厚军,张凤友,海水化学资源综合利用发展前景概述,海洋技术,2002,21(4):61-65
    [7]张锦瑞,国外从海水中提取铀的现状及研究方向,铀矿冶,1995,14(1):49-52
    [8] Kobuke Yoshiaki,Adsorption of uranium in seawater,Hyomen,1988,26(7): 461-472
    [9] Keen VJ,The Uranium in Seawater,The J.of the British Nuclear Energy Society,1965,7(2):178-183
    [10] Best F.R.,Driscoll Michael J,Prospects for the recovery of uranium from seawater,Nucl Technol,1986,73(1):55-68
    [11] Djogic Renata,Sipos Laszlo,Branica Marko,Characterization of uranium in seawater, Limnol.Oceanogr,1986,31(5):1122-1131
    [12] Sugo Takanobu.Status of development for recovery technology of uranium from seawater,Nippon Kaisui Gakkaishi.1997,51(1):20-27
    [13]金可勇,俞三传,高从阶,从海水中提铀的发展现状,海洋通报,2001,20(2):78-82
    [14]蔡邦肖,日本的海水化学资源提取技术研究,东海海洋,2000,18(4):52-56
    [15]艾宏韬,陈松,离子交换吸附平衡及其动力学痕兼论海水提铀机理,物理化学学报,1989,5(1):81-86
    [16]宫传文,密实移动床离子交换提铀设备的结构特点及选型计算,铀矿冶, 2007,26(3): 135-141
    [17]村慧芳,盛嘉伟,用HEHEHP液膜提取铀,复旦大学学报,1994,33(2):173-178
    [18] Stadtmuller A A,杨桦译,超导磁选的发展,国外金属矿选矿,1990,27(2):19-20
    [19]谭征,海洋能源开发技术,见:谭征,沈建平编,走向海洋新世纪,北京:北京工业大学出版社,1993.65-81
    [20]谭征.海水综合利用技术,见:谭征,沈建平编,走向海洋新世纪,北京:北京工业大学出版社,1993.98-114
    [21]阮小琴,核电大发展促中国海外找铀矿,上海证券报,2007, (5):1-5
    [22]马建标,功能高分子材料,北京:化学工业出版社,2000.65-67
    [23] Zhang Anyun,Asakura Toshihide,Uchiyama Gunzo,The adsorption mechanism of uranium(Ⅵ) from seawater on a macroporous fibrous polymeric adsorbent containing amidoxime chelating functional group,Reactive and Functional Polymers,2003,57(1): 67-76
    [24] Zhang Anyun,Uchiyama Gunzo, Askura Toshihide,The adsorption properities and kinetics of uranium(Ⅵ) with novel fibrous and polymeric adsorbent containing amidoxime chelating functional group from seawater,Separation Science and Technology,2003,38(8):1829-1849
    [25] Kawai Tomomi,Saito Kyoichi,Sugita Kazuyuki,et.al,Preparation of hydrophilic amidoxime fibers by co-grafting acrylonitrile and methacrylic acid from an optimized monomer composition,Radiation Physics and Chemistry,2000,59(4): 405-411
    [26] Takagi Norio,Hirotsu Takahiro,Sonoda Akinari,et.al,Adsorption properties of uranium on a banded fiber adsorbent containing amidoxime groups in a stream of seawater,Nippon KaisuiGakkaishi,2000,54(3): 242-249
    [27] Seko Nariaki,Katakai Akio,Tamada Masao,et.al,Fine fibrous amidoxime adsorbent synthesized by grafting and uranium adsorption-elution cyclic test with seawater,Separation Science and Technology,2004,39(16):3753-3767
    [28] Zhang Anyun,Uchiyama Gunzo,Asakura Toshihide,Dynamic-state adsorption and elution behaviour of uranium(Ⅵ) ions from seawater by fibrous and porous adsorbent containing amidoxime chelating functional groups, Adsorption Science and Technology, 2003,21(8):761-773
    [29] Denizli A,Say R,Garipcan B.Patir S,Methacryloylamidoglutamic acid functionalizedpoly (2-hydroxyethyl methacrylate) beads for UO22+ removal,Reactive&Functional Polymers,2004, 58(2):123-130
    [30]卢丹,辛浩波,董辉阳等,含偕胺肟基功能高分子膜吸附海水中铀的研究,铀矿冶,2009,28(4):187-198
    [31] Pinar Akkas Kavakli,Noriaki Seko,Masao Tamada,et.al,A Highly Efficient Chelating Polymer for the Adsorption of Uranyl and Vanadyl Ions at Low Concentrations,Adsorption, 2004,10(4):309-315
    [32]廖学品,邓慧,陆忠兵等,胶原纤维固化杨梅丹宁对UO22+的吸附,离子交换与吸附,2003,19(5):407-41
    [33] Kobuke Youshiaki,Tabushi Iwao, Aoki Takao,et.al,Composite fiber adsorbent for rapid uptake of uranyl from seawater,Ind.Eng.Chem.Res,1988,27(8):1461-1466
    [34]樊耀亭,吕秉玲,水溶液中二氧化锰对铀的吸附,环境科学学报,1999,19(1):32-37
    [35]李玉泉,孙法胜,杨金凤,等,偕胺肟基螯合纤维的制备,合成纤维工业,2004,27(4):10-15
    [36] Alakhras Fadi A,Dari Kamal Abu,Mubarak Mohammad S,Synthesis and chelating properties of some poly(amidoxime-hydroxamic acid) resins toward some trivalent lanthanide metal ions, Journal of Applied Polymer Science,2005,97(2):691-696
    [37]陈来,陈捷,王亚华等,聚丙烯胺肟螯合纤维的辐射合成及其对Pb(Ⅱ)离子的吸附性能,辐射研究与辐射工艺学报,2004,22(2):73-76
    [38]黄次沛,邢惠妮,在水溶液中腈纶偕胺肟化反应的研究,纺织学报,2000,21(2):89-92
    [39] Nicolae Bilba,Doina Bilba,Gabriela Moroi,Synthesis of a polyacrylamidoxime chelating fiber and its efficiency in the retention of palladium ions,Journal of Applied Polymer Science,2004,92(6): 3730-3735
    [40] Erika Carneiro Riqueza,Alcino Palermo de Aguiar,Luiz Claudio de Santa Maria,et.al. Modification of porous copolymers network based on acrylonitrile,Polymer Bulletin,2002, 48(4-5): 407-414
    [41] Naeem M EI-Sawy,Amidoximation of acrylonitrile radiation-grafted onto low-density polyethylene and its physicochemical characterization,Polymer International,2000,49(6): 533-538
    [42] Akio Katakai,Noriaki Seko,Takanobu Sugo,et.al,Comparison of amidoxime adsorbents prepared by cografting methacrylic acid and 2-hydroxyethyl methacrylate with acrylonitrile onto polyethylene,Ind.Eng.Chem.Res.,2000,39(8):2910-2915
    [43]唐蜜,李硕文,同帜,锰盐引发丙烯腈在维纶上接枝共聚制备螯合纤维,纺织高校基础科学学报,2002,15(3):220-223
    [44] Koske P.H.,Ohlrogge K.,Peinemann K.v.Uranium recovery from seawater by adsorption, Sep.Sci.Technol.,1988,23(12-13):1929-1940
    [45] Yoshiro Ito,Susumu Nakamura,Masataka Shirakashi,Masayoshi Kanno,Uranium adsorption characteristics of a circulating fluidized-bed adsorber,Ind.Eng.Chem.Res,1992, 38(6):879-886
    [46] Sugo Takanobu,Tamada Masao,Seguchi Tadao,et.al,Recovery system for uranium from seawater with fibrous adsorbent and its preliminary cost estimation,Nihon Genshiryoku Gakkaishi,2001,43(10):1010-1016
    [47]王小波,海水提铀新途径,地球,1992,(3):11-13
    [48] Jeffers T H,王景伟译,利用微生物回收金属,国外金属矿选矿,1992,29(2):41-44
    [49]杨乡珍,铀的光度分析进展,湿法冶金,2002,21(3):154-159
    [50]熊小青,罗明标,张文英,铀-苯甲酸-碱性红13光度法测定废水中的铀,杭州师专学报, 1994,3(1):107-110
    [51]袁丁,谢献谋,何治柯,铀-对氟偶氮氯膦显色反应萃取光度法的研究及应用,化学试剂,1998,20(5): 257-258
    [52]张恩慈,流动注射技术及其在铀分析中的应用,铀矿冶,1999,18(1): 58-63
    [53] Wu Z Qi.W,用在线Levextrel树脂分离和预浓集的流动注射分光光度测定地质样品中痕量铀,分析化学文摘,1990,6(6): 17-19
    [54]王建华,何荣桓,催化动力学光度法测定微量铀,核化学与放射化学,1993,15(1): 61-64
    [55]张彩虹,激光荧光法直接测定环境样品中的微量铀,核技术,1999,22(9): 551-554
    [56]戚苓,赖若红,张振飞,海水中铀的富集与测定,环境化学,1989,8(2): 81-84
    [57]李芮,分子自组装技术,印染,2008,34(14):23-23
    [58] Corinne L D,Estimating the Eficiency of SeIf-Assemblies,Journal of Supra- molecular Chemistry,2001,(1):39-52
    [59]沈家骢著,超分子层状结构-组装与功能,北京:科学出版社,2003
    [60] Iler R,Multiayers of colloidal particles, J.Colloid Interface Sci .1966, 21: 569-571
    [61]虞勤琴,乌学东,树枝状分子自组装膜的组装类型和应用进展,化学世界,2005,26(4): 247-256
    [62]白炳莲,李敏,基于氢键的自组装超分子体系,化学通报, 2004, (2): 124-131
    [63] David W,Grainger,Ultrathin self-assembled polymeric films on solid surfaces.2.Formation of 11–(n-Pentyldithio)undecanoate-bearing polyacrylate monolayers on gold,Langmuir, 1993,9(11)3200-3207
    [64] Rubner M F,Molecular-Level Processing of Conjugated Polymers.2.Layer-by-Layer Mani- pulation of In-Situ Polymerized p-Type Doped Conducting Polymers,Macromolecules,1995, 28(21):7115-7120
    [65] Kunitake Toyoki,Fujita Akio,Enhanced N-Demethylase Activity of Cytochrome , Bound to a Phosphate-Bearing Synthetic Bilayer Membrane, J.Am.Chem. Soc,1994116(19):8811-8812
    [66]刘冬生,唐永欣,戴道荣等,新型自组装二阶非线性光学(NLO)高分子膜的制备,中国科学(B级),1997,27(4):314-318
    [67] Balazs.A.C,Forming Patterned Films with Tethered Diblock Copolymers,Macromolecules, 1996,29(19):6338-6348
    [68] Balazs.A.C,Designing Patterned Surfaces by Grafting Y-Shaped Copolymers,Macro- molecules,1996,29(7):2667-2673
    [69]林贤福,何琳,大分子自组装体系及自组装功能膜结构的研究,功能材料,2000,31(2):121
    [70]吕公连,贾晓峰,分子自组装膜的应用研究,化学推进剂与高分子材料,2001,(2):9-10
    [71]李扬眉,陈志春,辣根过氧化物酶自组装多层膜结构形貌与活性的研究,功能高分子学报,2003,16(1):21-25
    [72]崔晓莉,江志裕,自组装膜技术在金属防腐蚀中的应用研究,腐蚀与防护,2001,22(8):335-338
    [73]胡乔生,二茂铁及其衍生物的应用与研究进展,江西化学,2007,2:8-11
    [74]王学杰,王立,王建军,高分子量聚二茂铁衍生物的性质与应,功能高分子通报,2002,15(3):368-376
    [75]张修华,王升富,崔仁发,二茂铁一磷钼钨杂多酸超分子膜电极电化学性能的研究,湖北大学学报(自然科学版),2002,24(1):52-55
    [76]支永刚,董春娥,韩杰等,手性二茂铁聚酰胺催化剂的合成及应用,化学研究与应,2000,12(4):412-415
    [77]王丽英,李保国,秦彩花,硫酸催化法合成二茂铁甲酸甲酯,化学试剂,2003,25(1):56
    [78]卢文贯,陶家洵,李旭宇等,双(二茂铁羧酸)二烷基锡配合物的合成、表征及其抗癌活性,应用化学,2000.17(2):126-130
    [79]李子峰,李纲,桑亚丽,二茂铁基G一二酮铜(Ⅱ)配合物的三阶非线性光学性质研究,河南化工,2004,(7):13-16
    [80]黄尊行,王秀丽,刘世雄,一个含二茂铁基的镉配合物Cd(dppf)I2的合成和表征,无机化学学报,2002,11(11):1119-1123
    [81]吴莹,闻荻江,鞠金梅,二茂铁衍生物一钼磷酸杂化材料的合成与性质,材料科学与工程学报,2004,22(6):280-282
    [82]边占喜,赵庆华,双(烷基二茂铁基)丙烷的合成及其燃速催化性质,应用化学,2004,21(9):923-927
    [83]吕紫铃,董绍俊,化学修饰电极的研究XⅢ:聚乙烯二茂铁(PVFe)薄膜电极和电催化效应,物理化学学报,1986,2(5):408-416
    [84]董绍俊,刘柏峰,毕军,一种新型的化学修饰电极电位传感器,科学通报,1984,6:348
    [85]杨庆华,叶宪曾,铕-二茂铁衍生物配合物修饰电极的电化学行为,中国稀土学报,2000,18(1):1-4
    [86] Dan Wang,Wei Zhu, Yarui An, et.al,LC with novel electrochemical detection for analysis of monoamine neurotransmitters in rat brain after administration of (R)-salsolinol and (R)-N-methylsalolinol,Chromatographia,2008,67(5-6): 369-374
    [87] M.Mazloum Ardakani,Z.Akrami,H.Kazemian,et.al,Accumulation and voltammetric determination of cobalt at zeolite-modified electrodes,Journal of Analytical Chemistry,2008, 63(2): 184-191
    [88] Gongjun Yang, Xilong Qu,Ming Shen,et.al,Electrochemical behavior of lead(Ⅱ) at poly(phenol red) modified glassy carbon electrode, and its trace determination by differentialpulse anodic stripping voltammetry,Microchimica Acta,2008,160(1-2): 275-281
    [89] Yu Hai-hu,Jiang De-sheng,Gold nanoparticulate thin films fabricated by the electrostatic self-assembly process,Journal of Wuhan University of Technology Materials Science Edition, 2002,17(2): 38-41
    [90]杨涛,杨婕,张伟等,聚合物膜与自组装膜法制备电化学DNA传感器的研究进展,分析测试学报,2007,26(3): 431-437
    [91]陶映初,顾志忙,张曦,丙烯腈在铝表面的原位电化学聚合涂层,应用化学,1998,15(4): 21-24
    [92]吴锦远,电引发丙烯腈聚合,广州化学,1998,(3): 1-9
    [93] Arimoto F.S,Haven A.C,Derivatives of Dicyclopentadienyliron,Du Pont De Nemours &Company,1955,77:6295-6297
    [94] Kavakli Pinar Akkas,Uzun Cengiz,Guven Olgun.Synthesis, characterization and amidoximation of a novel polymer:poly(N,N’-dipropiontrile acrylamide),Reactive and Functional Polymers,2004,61(2): 245-254
    [95] Baker Kenneth W.J.Horner Katherine S,Moggach Stephen A et.al,Synthesis of pyranosyl amidoximes by addition of amines to pyranosyl nitrile oxides,Tetrahedron Letters,2004,45(48): 8913-8916
    [96] Kavakli Pinar Akkas,Seko Noriaki,Tamada Masao et.al.,A high efficient chelating polymer for the adsorption of uranyl and vanadyl ions at low concentrations,Adsorption,2005,10(4): 309-319
    [97]徐斌,满瑞林,倪网东等,铝表面自组装分子及缓蚀剂复合膜的制备及耐蚀性能,腐蚀与防护,2007,28(10):499-508
    [98]徐溢,王楠,张小凤,直接用作金属表面新型防护涂层的硅烷偶联剂水解效果分析,腐蚀与防护,2000,21(4):157-159
    [99]董辉阳,辛浩波,谭钦艳等,偕胺肟基功能高分子膜吸附铀量的测定,青岛科技大学学报,2010,31(5):508-511
    [100]辛浩波,吴航,杨金风,偕胺肟基功能高分子摸对铀吸附过程的研究,离子交换与吸附,2009,25(3):259-264
    [101]杨金风,杨峰,辛浩波,偕胺肟基螯合纤维制备的反应动力学研究,合成纤维工业,2006,29(2):27-29
    [102]黄美荣,刘睿,李新贵,芳香族二胺聚合物修饰电极对痕量重金属离子的络合与探测,分析测试学报,2005,24(2):109-113

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700