用户名: 密码: 验证码:
SrAl_2O_4发光材料的光谱红移研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,稀土夜光产品已经广泛应用于人们的日常生活中,如夜光纤维、夜光毛绒玩具、夜光刺绣、夜光涂层面料等。稀土夜光产品之所以能在黑暗中自行发光,是因为其中添加了稀土发光材料,夜光产品的发光亮度及时间取决于发光材料的余辉性能,而发光颜色则取决于发光材料的发射光谱。
     稀土离子激活的碱土铝酸盐长余辉发光材料化学性质稳定、无辐射无污染,是安全环保的发光材料,其中SrAl_2O_4体系发光材料因其具有优异的余辉性能,在各种夜光产品中应用最为广泛。但是SrAl_2O_4体系发光材料普遍存在发光颜色单调的缺点,发射光谱主要集中在440-520 nm(蓝绿、黄绿)范围内,缺乏长波段(黄、橙、红)的光色,其制作的夜光产品在黑暗处大多只能发出黄绿色、蓝绿色的光,均为冷色调、缺乏多样性,为此,探索能够使SrAl_2O_4体系发光材料的光色向长波段方向移动(即红移)的方法,具有重要的科研意义和实用价值。
     课题研究中,采用两种不同的方法达到使SrAl_2O_4体系发光材料的光色发生红移的目的:方法一是在SrAl_2O_4体系发光材料的制备过程中掺杂不同的稀土离子;方法二是在SrAl_2O_4:Eu~(2+),Dy~(3+)发光材料中添加红色偶氮颜料,并比较其不同的原理及红移效果。
     方案一采用高温固相法制备SrAl_2O_4体系发光材料,通过改变各稀土离子的掺杂量来分析其在发光材料中的作用机理,从发光材料的发射光谱和光色坐标等方面入手,分析不同稀土离子对SrAl_2O_4体系发光材料的光谱红移影响。Eu~(2+)、Nd~(3+)激活的SrAl_2O_4发光材料,其发射波长为532nm,相对于应用最为广泛的SrAl_2O_4:Eu~(2+),Dy~(3+)发光材料(520nm)发生了红移。
     方案二是在SrAl_2O_4:Eu~(2+),Dy~(3+)发光材料应用于产品的过程中添加红色偶氮颜料,使得发光材料的光色发生红移。选用稀土发光材料应用于涂层织物的过程来进行实验。通过改变红色偶氮颜料和发光材料的质量比,分析颜料添加量对发光材料的影响。实验结果表明,通过添加红色偶氮颜料,可以使发光材料的光色发生红移,但同时会降低发光性能。在发光材料仍能发出人眼可见光的前提下,最多可以使发光材料的发射波长红移至605nm,光色红移至黄光区域。
     上述两种方法都使SrAl_2O_4体系发光材料的光色发生了红移。第一种是使发光材料的发光机理发生了改变,是本质上的变化;第二种则主要是光学影响和偶氮键的作用,是外界因素的影响,相比第一种方法红移效果更为明显。虽然究其原理并不相同,但这两种方法均为丰富SrAl_2O_4体系发光材料的光色提供了一定的理论和实验基础。
In recent years, rare earth luminous products have been widely applied in people's daily life, such as luminous fiber, luminous plush toys, luminous embroidery, luminous fabrics,etc. Rare earth products can glow in the dark is because of the rare-earth luminescence materials added. The luminous intensity and time depends on the luminescent properties, and color depends on the emission spectrum.
     Alkaline earth aluminates long afterglow materials doped with rare earth ions are chemical stability, no radiation pollution, safe and green. SrAl_2O_4 system luminescence materials have excellent luminescent properties, are most widely used in luminous products. But it also have downside to humdrun light colors, its emission spectrum mainly concentrated in 440-520 nm (glaucous, yellow-green) range, lack of long band (yellow, orange, red) light color. Because of this, its production mostly only emit glaucous and yellow-green light, cold tonal and lack of diversity. Therefore, explore some methods to make its color turn to the long band direction (red shift) has important research meaning and practical value.
     In the research, we used two different methods to make the light color of SrAl_2O_4 system luminescence materials red shift. One was doped different rare earth ions into the materials during the preparation. Another was doped red azo dye in the SrAl_2O_4:Eu~(2+),Dy~(3+) luminescence materials. Compare the different principle and red shift effect.
     First, we chose the high temperature solid state to prepare SrAl_2O_4 system luminescence materials. Changed the doping amounts of rare earth ions to analyze their effects in the luminescence materials, and analyzed different rare earth ions how to affect the materials by emission spectrum and light color coordinates. The emission spectrum wavelengh of SrAl_2O_4:Eu~(2+),Nd~(3+) was 532 nm, appeared redshift relative to the most widely used luminescence materials SrAl_2O_4:Eu~(2+), Dy~(3+) (520 nm).
     Second, we add red azo dye into SrAl_2O_4:Eu~(2+),Dy~(3+) in the process of production. Chose the luminous coating fabric process, changed the ratio of red azo dye and luminescence materials, analyzed the effect of different doping amounts of red azo dye. The experimental results showed that, the light color of luminescence materials appeared redshift, but the luminous property was reduced at the same time. Under the premise of light visible to human eyes, the emission spectrum wavelength could red shift to 605 nm and the light color red shift to yellow area.
     The above two methods both could make the light color of SrAl_2O_4 system luminescence materials red shift. The first one was change the emitting mechanism, was substantially change. The second one was main reason of the light interference, was the effect of external factors, its red shift effect was more apparent than the first method. Although the principle were not the same, the two methods both could rich the light color of SrAl_2O_4 system luminescence materials in certain theoretical and experimental basis.
引文
1.郑子樵,李红英.稀土功能材料[M].北京:化学化工出版社.2003:173-174.
    2.孙家跃,杜海燕.固体发光材料[M].北京:化学化工出版社.2003:5-6.
    3.肖志国.蓄光型发光材料及其制品[M].北京:化学工业出版社,2002:1-5.
    4.李晓微,金为群.稀土发光材料的研究与展望[J].中国材料科技与设备,2006 (2):20-22.
    5. Palilla F.C, Luvine AK,Tomkus MR.Fluorescent properties of alkaline earth aluminates of the type MAl204 activated by divalen europium[J].J.Electrochem.Soc, 1968,115(6):642- 644.
    6. Matsuzawa T,Aoki Y,Takeuchi N,et al.A new phos-phorescent phosphor with high brightness SrAl_2O_4∶Eu2+, Dy3+[J]. Electrochem.Soc,1996,143(8):2670-2673.
    7.洪新华.溶胶—凝胶(Sol—Gel)方法的原理与应用[J].天津师大学报(自然科学版), 2001(1):45-47.
    8.胡光辉.溶胶-凝胶技术研究及其应用[J].重庆工业高等专科学校学报, 2005(1):23-24.
    9. J.J.Kingsley, K.Suresh, K.C.Patil.Combustion synthesis of fine particle metal aluminates [J]. J Mater Sci,1990 25:1305-1312.
    10.王忍.涂层织物生产方法与发展趋势[J].纺织导报,2011(2):59-61.
    11.李卫珍,吴鸣,徐燃霞等.稀土铝酸锶夜光材料的制备工艺[J].江南大学学报(自然科学版),2009,8(3):340-344.
    12.吴红玲.涂层织物的开发及应用[J].广西化纤通讯, 2003(2):14-16.
    13.方波.基于回归算法的测色仪器研究[D]:[硕士学位论文].华中科技大学,2008.
    14. Yang Zhi-Ping, Liu Zhen, Zhu Sheng-Chao.The luminescent character of long-afterglow material SrAl_2O_4:Eu2+, Dy3+[J]. Proceedings of SPIE - The International Society for Optical Engineering,2002 (4918):413-417.
    15.白木子荫.稀土发光材料的发光原理与应用[J].稀土,2002,26(6):48-51.
    16.张玉军,尹衍升.Eu2+,Dy3+共激活铝酸锶发光材料长余辉发光机理探讨[J].人工晶体学报,2004,2 (33):67-70.
    17.赵淑金,林元华,张中太等.Eu2+离子在Sr2Al6O11基磷光体中发光行为的研究[J].无机材料学报,2003,1(18):225-228.
    18.葛明桥,赵菊梅,郭雪峰.稀土铝酸锶夜光纤维的光色特性[J].纺织学报, 2009,30(5):1-5.
    19.蒙延双,王达健,李岚等.锶铝比对稀土掺杂铝酸锶物相及发光性能的影响[J].中国稀土学报,2005,3(23):277-280.
    20.栾林,郭崇峰,黄德修.锶铝比例对铝酸锶长余辉发光材料性能的影响[J].无机材料学报,2009,1(24):53-56.
    21. LU Xingddong, SHU Wangen.Roles of crystal defects in persistent luminescence of Eu2+,Dy3+co-doped strontium aluminate based phosphors[J].Rare Metals,2007,8(26):305-310.
    22. Yang Zhi-Ping, Liu Zhen, Zhu Sheng-Chao.The luminescent character of long-afterglow material SrAl_2O_4:Eu2+, Dy3+[J]. Proceedings of SPIE - The International Society for Optical Engineering,2002 (4918):413-417.
    23.金昭.纤维用SrAl_2O_4发光材料制备工艺的优化[D]:[硕士学位论文].江南大学纺织服装学院,2010.
    24.刘晓林,邹新阳,施磊等.铝酸盐长余辉发光涂料光学性能研究[J].稀有金属,2008,32(4):502-505.
    25.赵菊梅,郭雪峰,徐燕娜等.稀土铝酸锶夜光纤维发光性质的研究[J].纺织学报,2008,29 (11):1-5.
    26.刘光华.稀土材料学[M].北京:化学化工出版社.2007:200-201.
    27.李群,滕晓明,庄卫东等.稀土长余辉发光材料的研究现状和发展趋势[J].稀土,2005,26 (4):62-67.
    28.柳成,王银海,胡义华等.不同结构稀土掺杂铝酸锶的合成与发光性能研究[J].功能材料,2007,12 (38):1952-1955.
    29.马伟,万发荣,龙毅等.SrA1_2O_4:Eu,Dy的粉末粒度与发光性能的关系.发光学报,2003,1 (24):95-98.
    30.何大伟,崔兴龙.稀土氧化钕对铝酸盐长余辉发光材料性能的影响[J].中国稀土学报, 2001,19(6):599-601.
    31.赵菊梅.稀土铝酸锶夜光纤维光照激发和发射过程研究[D]:[硕士学位论文].无锡:江南大学纺织工程系,2008.
    32. Qiu Guanming. Studies on self-luminous material and coating with long persistent yellow-green afterglow[J]. Rare earth , 2003, 21(5): 533-535.
    33.罗瑞林,织物涂层技术[M]北京:中国纺织出版社,2005:1-288.
    34.胡成发,印刷色彩与色度学[M].北京:印刷工业出版社,1993 :229 - 310.
    35.张晓明,朱月华,王海波,井艳军.铝酸盐红色荧光粉研究进展[J].材料导报,2008,22(X): 270-273.
    36.孙家跃,夏志国,杜海燕.稀土红色长余辉发光材料研究进展[J].中国稀土学报,2005,23 (3): 257-264.
    37.王光辉,梁小平,顾玉芬.硼酸掺量对SrAl204长余辉发光材料的发光性能影响[J].光谱学与光谱分析, 2008,2(28):1020-1022.
    38. Yuji Kamiyanagi, Mamoru Kitaura, Masami Kaneyoshi.Temperature dependence of long-lasting afterglow in SrAl_2O_4:Eu,Dy phosphor[J].Journal of Luminescence,2007 122-123:509-511.
    39. Ryu H, Bartwal KS. Defect structure and its relevance to photoluminescence in SrAl_2O_4: Eu2+, Nd3+[J]. Physica B-Condensed Matter,2009,404(12-13): 1714-1718.
    40. Jorma H?ls?, Taneli Laamanen, Mika Lastusaari,et al. Electronic structure of the SrAl_2O_4: Eu2+ persistent luminescence material [J].Journal of Rare Earths,2009,27(4):550-554.
    41.崔彩娥,王森,黄平. Dy含量对红色长余辉发光材料Sr3Al2O6: Eu2+,Dy3+性能的影响[J].物理学报,2009,58(5):3565-3571.
    42.吕兴栋,舒万艮.晶格点缺陷的形成及其在发光材料中的作用[J].无机化学学报,2006,22 (5):808 - 812.
    43.吕兴栋,舒万艮,黄可龙.SrO/Al2O3比率对Sr2AlO4∶Eu,Dy发光性能的影响[J].发光学报.2004,12(6):674-677.
    44.刘晓林,邹新阳,施磊等.铝酸盐长余辉发光涂料光学性能研究[J].稀有金属,2008,32(4):502-505.
    45.孟庆裕,陈宝玖,许武,赵晓霞等. Y2O3纳米晶体中Ln3+(Ln=Tb,Tm,Eu)发光浓度猝灭及能量传递的研究[J].光谱学与光谱分析,2009,29(1):151-155.
    46.方容川.固体光谱学[M].合肥:中国科学技术大学出版社,2001:57-96,126-200.
    47.何瑾馨.染料化学[M].北京:中国纺织出版社,2004,6-9.
    48.胡劲,孙加林,刘建良. SrA1_2O_4: Eu2+, Dy3+长余辉材料缺陷化学分析[J].中国稀土学报, 2005, 23:30-33.
    49.金昭,张玲,葛明桥.夜光纤维用发光材料制备中Eu2+, Dy3+掺量的选择[J].江南大学学报(自然科学版), 2010,09(3):323-327.
    50.刘新刚,冯亚青,李飞,新型偶氮卟啉荧光化合物的合成、表征及光谱性质[J].天津大学学报, 2006, 39(4):400-403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700