用户名: 密码: 验证码:
超连续谱光源相干特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光子晶体光纤中产生的超连续谱在光谱学、脉冲压缩、可调谐超快飞秒激光源的设计等领域有着重要的应用价值,在近十年得到广泛深入的研究。相干性是超连续谱光源的重要物理特性,本文对其进行了理论和实验研究。
     首先概述了超连续谱光源的发展历史与研究现状,以及国内外对其相干性的研究进展情况。详细介绍了光子晶体光纤中超连续谱产生的理论基础以及数值仿真模型,分析了色散与非线性效应在超连续谱产生过程中的重要作用。数值模拟了光子晶体光纤中超连续谱的产生。
     色散是超连续谱产生过程中的一个重要参数,本文对光纤色散的测量方法进行了比较,介绍了干涉法测量光纤色散的原理。搭建了基于超连续谱光源的宽带光纤色散测量平台,对已有的光子晶体光纤色散测量装置进行了改进,提高了其测量精度与自动化程度。测量了两种特殊光纤:全固态光子带隙光纤与氟化物ZBLAN光纤的色散。实验结果与数值计算结果非常吻合,验证了色散测量系统的有效性。
     对超连续谱光源的相干性进行了阐述,说明了其与普通白光光源相干性之间的区别。在广义非线性薛定谔方程中加入噪声项对超连续谱光源的相干性进行仿真,引入互相干度的概念对其进行量化分析。数值计算了不同泵浦条件下产生的超连续谱光源的相干性,结果表明调制不稳定性是造成超连续谱光源相干性下降的主要影响因素;为了获得高相干的宽带超连续谱,需要在光纤的反常色散区远离零色散波长处使用短脉冲进行泵浦。
     引入自相干度的概念对长脉冲产生的超连续谱光源的相干性进行了定量分析,搭建了高精度的马赫-曾德尔干涉仪实验系统,对光子晶体光纤中产生的超连续谱光源的相干长度以及自相干度进行了测量。结果表明,整个超连续谱波段内相干性都较好,平均自相干度为0.461;不同波长处的相干长度不同,自相干度也不同,泵浦脉冲中心波长长波一侧相干长度较长,相干性较好。
Supercontinuum (SC) generated in photonic crystal fibers (PCFs) has many applications in various fields such as spectroscopy, pulse compression and tunable ultrafast femtoseconds laser sources. In the recent decade, it has been researched widely and deeply. Coherence property is an important physical characteristic of SC source and this dissertation analyzes it theoretically and experimentally.
     Firstly, the historical development and research state of SC generation are summarized and also the research of coherence of SC is concluded. The theoretical foundation and numerical model of SC generation in PCFs are described, and the role of dispersion and nonlinear effects in the process of SC generation is analyzed. The SC generation in PCFs is numerically simulated.
     Secondly, because of the importance of the dispersion in the SC generation, its measurement methods are compared and the theory of interference method is illustrated. Broadband dispersion measurement apparatus based on supercontinuum was constructed. The existing apparatus which was used to measure the dispersion of PCFs has been improved with high measurement precision and automation. The dispersion characteristics of two kinds of special fibers all solid photonic bandgap fiber and fluoride ZBLAN fiber are measured. The experimental results match well with the calculation results; as a result, the validity of the dispersion measurement system is clarified.
     Thirdly, coherence characteristics of SC source are illustrated to distinguish the distinction between the coherence of the conventional white light and SC source. Adding noise in the generalized nonlinear Schr?dinger equation (GNLSE) models the coherence of SC. Degree of mutual coherence is introduced to quantify the coherence of SC. The coherence properties of SC generated under various pump conditions are calculated; from the results, modulation instability is the main effect to degrade the coherence of SC. To obtain coherent broadband SC, the PCF need to be pumped by short pulses which are far from zero dispersion wavelength in anomalous dispersion region.
     Finally, degree of self-coherence is introduced to quantify the coherence of SC generated by long pulse. High precision Mach-Zehnder interferometer is built to measure the coherence length and degree of self-coherence of SC generated in PCFs. The results show that above the whole SC spectral range the coherence is comparatively good, and the average self-coherence degree is 0.461. The coherence lengths and degree of self-coherence of different wavelengths are different. The coherence length of the longer side of the pump wavelength is better and it presents better coherent property.
引文
[1] R. R. Alfano, S. L. Shapiro. Emission in the Region 4000 to 7000 ? Via Four-Photon Coupling in Glass[J]. Physical Review Letters, 1970, 24(11): 584-587
    [2] R. R. Alfano, S. L. Shapiro. Observation of Self-Phase Modulation and Small-Scale Filaments in Crystals and Glasses[J]. Physical Review Letters, 1970, 24(11): 592-594
    [3] J. K. Ranka, R. S. Windeler, A. J. Stentz. Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm[J]. Opt. Lett., 2000, 25(1): 25-27
    [4] J. C. Knight. Photonic crystal fibres[J]. Nature, 2003, 424(6950): 847-851
    [5] P. Russell. Photonic Crystal Fibers[J]. Science, 2003, 299(5605): 358-362
    [6] J. C. Knight, T. A. Birks, P. S. J. Russell, D. M. Atkin. All-silica single-mode optical fiber with photonic crystal cladding[J]. Opt. Lett., 1996, 21(19): 1547-1549
    [7] H. Kano, H.-O. Hamaguchi. Characterization of a supercontinuum generated from a photonic crystal fiber and its application to coherent Raman spectroscopy[J]. Opt. Lett., 2003, 28(23): 2360-2362
    [8] H. N. Paulsen, K. M. Hilligse, J. Th?gersen, S. R. Keiding, J. J. Larsen. Coherent anti-Stokes Raman scattering microscopy with a photonic crystal fiber based light source[J]. Opt. Lett., 2003, 28(13): 1123-1125
    [9] H. Takara, T. Ohara, K. Mori, K. Sato, E. Yamada, Y. Inoue, T. Shibata, M. Abe, T. Morioka, K. I. Sato. More than 1000 channel optical frequency chain generation from single supercontinuum source with 12.5 GHz channel spacing[J]. Electronics Letters, 2000, 36(25): 2089-2090
    [10] F. Futami, K. Kikuchi. Low-noise multiwavelength transmitter using spectrum-sliced supercontinuum generated from a normal group-velocity dispersion fiber[J]. Photonics Technology Letters, IEEE, 2001, 13(1): 73-75
    [11] Boyraz, Ouml, Zdal, M. N. Islam. A Multiwavelength CW Source Based on Longitudinal Mode-Carving of Supercontinuum Generated in Fibers and Noise Performance[J]. J. Lightwave Technol., 2002, 20(8): 1493-1499
    [12] C. Lin, R. H. Stolen. New nanosecond continuum for excited-state spectroscopy[J]. Appl. Phys. Lett., 1976, 28(4): 216-218
    [13] A. Hasegawa. Transmission of stationary nonlinear optical pulses in dispersive dielectric fibers. I. Anomalous dispersion[J]. Appl. Phys. Lett., 1973, 23(3): 142-144
    [14] L. F. Mollenauer, R. H. Stolen, J. P. Gordon. Experimental Observation of Picosecond Pulse Narrowing and Solitons in Optical Fibers[J]. Physical Review Letters, 1980, 45(13): 1095-1098
    [15] M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, D. S. Chemla. Femtosecond distributed soliton spectrum in fibers[J]. J. Opt. Soc. Am. B, 1989, 6(6): 1149-1158
    [16] M. N. Islam, G. Sucha, I. Bar-Joseph, M. Wegener, J. P. Gordon, D. S. Chemla. Broad bandwidths from frequency-shifting solitons in fibers[J]. Opt. Lett., 1989, 14(7): 370-372
    [17] D. Mogilevtsev, T. A. Birks, P. S. J. Russell. Group-velocity dispersion in photonic crystal fibers[J]. Opt. Lett., 1998, 23(21): 1662-1664
    [18] N. G. R. Broderick, T. M. Monro, P. J. Bennett, D. J. Richardson. Nonlinearity in holey optical fibers: measurement and future opportunities[J]. Opt. Lett., 1999, 24(20):1395-1397
    [19] S. Martin-Lopez, L. Abrardi, P. Corredera, M. Gonzalez Herraez, A. Mussot. Spectrally-bounded continuous-wave supercontinuum generation in a fiber with two zero-dispersion wavelengths[J]. Opt. Express, 2008, 16(9): 6745-6755
    [20] A. Mussot, M. Beaugeois, M. Bouazaoui, T. Sylvestre. Tailoring CW supercontinuum generation in microstructured fibers with two-zero dispersion wavelengths[J]. Opt. Express, 2007, 15(18): 11553-11563
    [21] K. M. Hilligs?e, T. Andersen, H. Paulsen, C. Nielsen, K. M?lmer, S. Keiding, R. Kristiansen, K. Hansen, J. Larsen. Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths[J]. Opt. Express, 2004, 12(6): 1045-1054
    [22] G. Genty, M. Lehtonen, H. Ludvigsen, M. Kaivola. Enhanced bandwidth of supercontinuum generated in microstructured fibers[J]. Opt. Express, 2004, 12(15): 3471-3480
    [23] J. C. Travers, S. V. Popov, J. R. Taylor. Extended blue supercontinuum generation in cascaded holey fibers[J]. Opt. Lett., 2005, 30(23): 3132-3134
    [24] J. C. Travers, A. B. Rulkov, B. A. Cumberland, S. V. Popov, J. R. Taylor. Visible supercontinuum generation in photonic crystal fibers with a 400W continuous wave fiber laser[J]. Opt. Express, 2008, 16(19): 14435-14447
    [25] P.-A. Champert, V. Couderc, P. Leproux, S. Février, V. Tombelaine, L. Labonté, P. Roy, C. Froehly, P. Nérin. White-light supercontinuum generation in normally dispersive optical fiber using original multi-wavelength pumping system[J]. Opt. Express, 2004, 12(19): 4366-4371
    [26] E. R?ikk?nen, G. Genty, O. Kimmelma, M. Kaivola, K. P. Hansen, S. C. Buchter. Supercontinuum generation by nanosecond dual-wavelength pumping inmicrostructured optical fibers[J]. Opt. Express, 2006, 14(17): 7914-7923
    [27] T. Schreiber, T. Andersen, D. Schimpf, J. Limpert, A. Tünnermann. Supercontinuum generation by femtosecond single and dual wavelength pumping in photonic crystal fibers with two zero dispersion wavelengths[J]. Opt. Express, 2005, 13(23): 9556-9569
    [28] W. Wadsworth, N. Joly, J. Knight, T. Birks, F. Biancalana, P. Russell. Supercontinuum and four-wave mixing with Q-switched pulses in endlessly single-mode photonic crystal fibres[J]. Opt. Express, 2004, 12(2): 299-309
    [29] C. Xiong, Z. Chen, W. J. Wadsworth. Dual-Wavelength-Pumped Supercontinuum Generation in an All-Fiber Device[J]. J. Lightwave Technol., 2009, 27(11): 1638-1643
    [30] A. Shirakawa, J. Ota, M. Musha, K. I. Nakagawa, K.-I. Ueda, J. R. Folkenberg, J. Broeng. Large-mode-area erbium-ytterbium-doped photonic-crystal fiber amplifier for high-energy femtosecond pulses at 1.55μm[J]. Opt. Express, 2005, 13(4): 1221-1227
    [31] Z. Zhu, T. Brown. Experimental studies of polarization properties of supercontinua generated in a birefringent photonic crystal fiber[J]. Opt. Express, 2004, 12(5): 791-796
    [32] M. Lehtonen, G. Genty, H. Ludvigsen, M. Kaivola. Supercontinuum generation in a highly birefringent microstructured fiber[J]. Applied Physics Letters, 2003, 82(14): 2197-2199
    [33] T. Yamamoto, H. Kubota, S. Kawanishi, M. Tanaka, S. Yamaguchi. Supercontinuum generation at 1.55μm in a dispersion-flattened polarization-maintaining photonic crystal fiber[J]. Opt. Express, 2003, 11(13): 1537-1540
    [34] V. V. R. Kumar, A. George, W. Reeves, J. Knight, P. Russell, F. Omenetto, A. Taylor. Extruded soft glass photonic crystal fiber for ultrabroad supercontinuum generation[J].Opt. Express, 2002, 10(25): 1520-1525
    [35] H. Hundertmark, D. Kracht, D. Wandt, C. Fallnich, V. V. R. K. Kumar, A. George, J. Knight, P. Russell. Supercontinuum generation with 200 pJ laser pulses in an extruded SF6 fiber at 1560 nm[J]. Opt. Express, 2003, 11(24): 3196-3201
    [36] J. H. V. Price, T. M. Monro, H. Ebendorff-Heidepriem, F. Poletti, P. Horak, V. Finazzi, J. Y. Y. Leong, P. Petropoulos, J. C. Flanagan, G. Brambilla, F. Xian, D. J. Richardson. Mid-IR Supercontinuum Generation From Nonsilica Microstructured Optical Fibers[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2007, 13(3): 738-749
    [37] N. Nishizawa, Y. Chen, P. Hsiung, E. P. Ippen, J. G. Fujimoto. Real-time, ultrahigh-resolution, optical coherence tomography withan all-fiber, femtosecond fiber laser continuum at 1.5μm[J]. Opt. Lett., 2004, 29(24): 2846-2848
    [38] I. Hartl, X. D. Li, C. Chudoba, R. K. Ghanta, T. H. Ko, J. G. Fujimoto, J. K. Ranka, R. S. Windeler. Ultrahigh-resolution optical coherence tomography using continuum generation in an air-silica microstructure optical fiber[J]. Opt. Lett., 2001, 26(9): 608-610
    [39] H. Lim, Y. Jiang, Y. Wang, Y.-C. Huang, Z. Chen, F. W. Wise. Ultrahigh-resolution optical coherence tomography with a fiber laser source at 1μm[J]. Opt. Lett., 2005, 30(10): 1171-1173
    [40] W. Drexler, U. Morgner, F. X. K?rtner, C. Pitris, S. A. Boppart, X. D. Li, E. P. Ippen, J. G. Fujimoto. In vivo ultrahigh-resolution optical coherence tomography[J]. Opt. Lett., 1999, 24(17): 1221-1223
    [41] S. Moon, D. Y. Kim. Ultra-high-speed optical coherence tomography with a stretched pulse supercontinuum source[J]. Opt. Express, 2006, 14(24): 11575-11584
    [42] S. A. Diddams, D. J. Jones, J. Ye, S. T. Cundiff, J. L. Hall, J. K. Ranka, R. S. Windeler, R. Holzwarth, T. Udem, Auml, T. W. Nsch. Direct Link between Microwave and Optical Frequencies with a 300 THz Femtosecond Laser Comb[J]. Physical Review Letters, 2000, 84(22): 5102-5105
    [43] T. Udem, R. Holzwarth, T. W. Hansch. Optical frequency metrology[J]. Nature, 2002, 416(6877): 233-237
    [44] S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates. Standards of Time and Frequency at the Outset of the 21st Century[J]. Science, 2004, 306(5700): 1318-1324
    [45] M. Nisoli, S. De Silvestri, O. Svelto. Generation of high energy 10 fs pulses by a new pulse compression technique[J]. Applied Physics Letters, 1996, 68(20): 2793-2795
    [46] M. Nakazawa, K. Tamura, H. Kubota, E. Yoshida. Coherence Degradation in the Process of Supercontinuum Generation in an Optical Fiber[J]. Optical Fiber Technology, 1998, 4(2): 215-223
    [47] J. M. Dudley, S. Coen. Coherence properties of supercontinuum spectra generated in photonic crystal and tapered optical fibers[J]. Opt. Lett., 2002, 27(13): 1180-1182
    [48] J. M. Dudley, S. Coen. Numerical simulations and coherence properties of supercontinuum generation in photonic crystal and tapered optical fibers[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2002, 8(3): 651-659
    [49] X. Gu, M. Kimmel, A. Shreenath, R. Trebino, J. Dudley, S. Coen, R. Windeler. Experimental studies of the coherence of microstructure-fiber supercontinuum[J]. Opt. Express, 2003, 11(21): 2697-2703
    [50] J. Nicholson, M. Yan, A. Yablon, P. Wisk, J. Fleming, F. Dimarcello, E. Monberg. A high coherence supercontinuum source at 1550 nm[C]. Proceedings of the Optical Fiber Communications Conference, 2003.
    [51] I. Zeylikovich, R. R. Alfano. Coherence properties of the supercontinuum source[J]. Applied Physics B: Lasers and Optics, 2003, 77(2): 265-268
    [52] F. Lu, W. Knox. Generation of a broadband continuum with high spectral coherence in tapered single-mode optical fibers[J]. Opt. Express, 2004, 12(2): 347-353
    [53] I. Zeylikovich, V. Kartazaev, R. R. Alfano. Spectral, temporal, and coherence properties of supercontinuum generation in microstructure fiber[J]. J. Opt. Soc. Am. B, 2005, 22(7): 1453-1460
    [54] J. M. Dudley, G. Genty, S. Coen. Supercontinuum generation in photonic crystal fiber[J]. Reviews of Modern Physics, 2006, 78(4): 1135-1184
    [55] G. Yuan, R. Shuangchen, Y. Yongqin, W. Yuncai. Analysis on the coherence properties of supercontinuum spectra generated in a photonic crystal fiber[J]. Journal of Shenzhen University Science and Engineering, 2007, 24(2): 149-153
    [56]刘小明.光子晶体光纤色散特性的理论和实验研究[D], 2009.
    [57]张斌,侯静,姜宗福.全固态光子带隙光纤中实现光谱可控的大功率超连续谱输出[J].光学学报, 2010, 30(9): 2513-2518
    [58]王彦斌,侯静,梁冬明,陆启生,陈子伦,李霄,刘诗尧,袁立国.光子晶体光纤正常色散区超连续谱产生的研究[J].中国激光, 2010, 04): 1073-1077
    [59]奚小明,陈子伦,孙桂林,谌鸿伟,李志鸿,黄值河,侯静.双波长抽运拉锥光子晶体光纤产生超连续谱研究[J].光学学报, 2011, 31(2): 206001-206001
    [60]王彦斌,熊春乐,侯静,陆启生,彭杨,陈子伦.长脉冲抽运光子晶体光纤四波混频和超连续谱的理论研究[J].物理学报, 2011,60(1): 231-237
    [61] G. P. Agrawal. Nonlinear fiber optics [M]. San Siego: Academic Press, 2010.
    [62] J. M. Dudley, J. R. Taylor. Supercontinuum generation in optical fibers [M]. New York: Cambridge University Press, 2010.
    [63] B. Cumberland. Wavelength extension in speciality fibers [D], 2009.
    [64] K. J. Blow, D. Wood. Theoretical description of transient stimulated Raman scattering in optical fibers[J]. Quantum Electronics, IEEE Journal of, 1989, 25(12): 2665-2673
    [65] N. Karasawa, S. Nakamura, N. Nakagawa, M. Shibata, R. Morita, H. Shigekawa, M. Yamashita. Comparison between theory and experiment of nonlinear propagation for a-few-cycle and ultrabroadband optical pulses in a fused-silica fiber[J]. Quantum Electronics, IEEE Journal of, 2001, 37(3): 398-404
    [66] T. A. Birks, J. C. Knight, P. S. J. Russell. Endlessly single-mode photonic crystal fiber[J]. Opt. Lett., 1997, 22(13): 961-963
    [67] M. Midrio, M. P. Singh, C. G. Someda. The Space Filling Mode of Holey Fibers: An Analytical Vectorial Solution[J]. J. Lightwave Technol., 2000, 18(7): 1031-1037
    [68] A. Ferrando, E. Silvestre, J. J. Miret, P. Andrés, M. V. Andrés. Full-vector analysis of a realistic photonic crystal fiber[J]. Opt. Lett., 1999, 24(5): 276-278
    [69]季家镕.高等光学教程光学的基本电磁理论[M].北京:科学出版社, 2007.
    [70]季家镕,冯莹.高等光学教程非线性光学与导波光学[M].北京:科学出版社, 2008.
    [71] M. Poulain, M. Poulain, J. Lucas. Verres fluores au tetrafluorure de zirconium proprietes optiques d'un verre dope au Nd3+[J]. Materials Research Bulletin, 1975, 10(4): 243-246
    [72] G. Qin, X. Yan, C. Kito, M. Liao, C. Chaudhari, T. Suzuki, Y. Ohishi. Ultrabroadband supercontinuum generation from ultraviolet to 6.28 mu m in a fluoride fiber[J]. Applied Physics Letters, 2009, 95(16): 161103-161103
    [73] Z. Xiushan, N. Peyghambarian. High-Power ZBLAN Glass Fiber Lasers: Review andProspect[J]. Advances in OptoElectronics, 2010
    [74] G. Androz, M. Bernier, D. Faucher, R. Vallée. 2.3 W single transverse mode thulium-doped ZBLAN fiber laser at 1480 nm[J]. Opt. Express, 2008, 16(20): 16019-16031
    [75] Z. Chen, A. J. Taylor, A. Efimov. Coherent mid-infrared broadband continuum generation in non-uniform ZBLAN fiber taper[J]. Opt. Express, 2009, 17(7): 5852-5860
    [76] X. Chenan, X. Zhao, M. N. Islam, F. L. Terry, M. J. Freeman, A. Zakel, J. Mauricio. 10.5 W Time-Averaged Power Mid-IR Supercontinuum Generation Extending Beyond 4μm With Direct Pulse Pattern Modulation[J]. Selected Topics in Quantum Electronics, IEEE Journal of, 2009, 15(2): 422-434
    [77] M. Bellini, T. W. H?nsch. Phase-locked white-light continuum pulses: toward a universal optical frequency-comb synthesizer[J]. Opt. Lett., 2000, 25(14): 1049-1051
    [78] C. Gross, T. Best, D. Van Oosten, I. Bloch. Coherent and incoherent spectral broadening in a photonic crystal fiber[J]. Opt. Lett., 2007, 32(13): 1767-1769
    [79] S. B. Cavalcanti, G. P. Agrawal, M. Yu. Noise amplification in dispersive nonlinear media[J]. Physical Review A, 1995, 51(5): 4086-4092
    [80] P. D. Drummond, J. F. Corney. Quantum noise in optical fibers. I. Stochastic equations[J]. J. Opt. Soc. Am. B, 2001, 18(2): 139-152
    [81] T. M. Fortier, J. Ye, S. T. Cundiff, R. S. Windeler. Nonlinear phase noise generated in air-silica microstructure fiber and its effect on carrier-envelope phase[J]. Opt. Lett., 2002, 27(6): 445-447
    [82] N. R. Newbury, B. R. Washburn, K. L. Corwin, R. S. Windeler. Noise amplification during supercontinuum generation in microstructure fiber[J]. Opt. Lett., 2003, 28(11): 944-946

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700