用户名: 密码: 验证码:
超细Ti(C,N)粉体表面包覆及其金属陶瓷的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究首次将非均相沉淀—热还原法应用于制备金属包覆碳氮化钛复合粉末。本文设计了两种非均相沉淀—热还原法,分别制备了Ni包覆Ti(C,N)复合粉末及Ni、Mo包覆Ti(C,N)复合粉末,然后以包覆粉末为原料,采用真空烧结制备了Ti(C,N)基金属陶瓷。运用SEM、EDS、XRD、TG-DSC等分析技术对包覆工艺进行了研究,并对金属陶瓷的显微组织、微区成分及性能进行了表征和分析。
     以碳酸氢铵、硝酸镍、Ti(C,N)粉末为主要原料,采用非均相沉淀—热还原法制备Ni/Ti(C,N)包覆粉,实验确定了制备过程优化的工艺参数:使用0.5μm的Ti(C,N)粉末,Ti(C,N)颗粒含量为15g/L,碳酸氢铵溶液的滴加速度为3mL/min,搅拌速度为800r/min,添加表面活性剂PEG6000为5~10g/L,最终的pH值控制在8.0~8.5范围内,然后将获得的前驱体在550℃氢气气氛中煅烧及还原。将合成的Ni/Ti(C,N)包覆粉经压制与真空烧结制得金属陶瓷,结果表明: Ti(C,N)-Ni金属陶瓷的硬质相和粘结相分布均匀,但仍然存在晶粒长大现象;金属陶瓷的断裂方式为沿晶和穿晶混合型断裂;相成分为纯净的Ti(C,N)与Ni两相;该金属陶瓷的综合性能优于传统工艺制得的金属陶瓷。
     以氨水、硝酸镍、钼酸铵、Ti(C,N)粉末为主要原料,结合配位沉淀的原理与非均相成核的机理,采用非均相沉淀—热还原法制备制备Ni-Mo-C/Ti(C,N)包覆粉,制备过程的优化的工艺参数为:Ti(C,N)颗粒含量为15g/L,搅拌速度为800r/min,PEG6000的加入量为8g/L,1~1.5倍的释水量,反应温度为55~60℃,然后将获得的前驱体在850℃氢气气氛中煅烧及还原。进一步的实验表明:采用包覆粉为原料制得了晶粒细小、显微结构均匀的(Ti,Mo)(C,N)-Ni金属陶瓷,但金属陶瓷的显微组织中看不到明显的环形结构;金属陶瓷的断裂方式为沿晶和韧窝混合型断裂;增韧机理主要为裂纹偏转和裂纹桥接;金属陶瓷中出现Ni3Ti相;除断裂韧性外,金属陶瓷的力学性能优于传统工艺制得的金属陶瓷;由于包覆粉在烧结过程中使得Ti、Mo原子在金属粘结相中固溶过多,检测不到金属陶瓷的磁性能。
The heterogeneous precipitation-thermal reduction process was applied to preparation of metal coated titanium carbonitride composite powders for the first time in this paper. Two new technologies of heterogeneous precipitation-thermal reduction process for synthesizing Ni coated Ti(C,N) composite powders and Ni&Mo coated Ti(C,N) composite powders had been developed,then the Ti(C,N) based cermets were prepared from the as-prepared composite powders after vacuum sintering. The preparation technologies of the coated powders were studied by applying various analysis techniques such as SEM, EDS, XRD, TG-DSC. The microstructure, micro-area chemical composition and properties of the as-prepared cermets were also analyzed.
     Ni/Ti(C,N) coated powders were synthesized by heterogeneous precipitation-thermal reduction process using nickel nitrate, ammonium bicarbonate and Ti(C,N) powders as the main materials, The optimum process parameters were determined through our experiments, i.e., 0.5μm of particle size of Ti(C,N), 15g/L of Ti(C,N) powders, 3mL/min of feeding rate of ammonium bicarbonate solution, 800r/min of stirring rate, 5~10g/L of PEG6000, 8.0~8.5 of final pH value, then calcing and reducing at 550℃in H2 atmosphere. The Ni/Ti(C,N) coated powders were pressed and vacuum sintered,finally the cermet was obtained. The results show that the distribution of hard phase and binder phase in the cermet is uniform, but the phenomenon of growth of grain still occurs; fracture micrographs show that main failure mode of the cermet is a mixed one, i.e., trans-granular and inter-granular fractures are both exist; the phase constituents of the cermet are pure Ti(C,N) phase and Ni phase; the cermet show better comprehensive properties compared to the cermet which prepared by traditional process.
     Combing the theory of coordinated precipitation with the mechanism of heterogeneous nucleation,Ni-Mo-C/Ti(C,N) coated powders were also synthesized by heterogeneous precipitation-thermal reduction process using nickel nitrate, ammonium molybdate, ammonium hydroxide and Ti(C,N) powders as the main materials, The optimum process parameters are as follows: 15g/L of Ti(C,N) powders, 800r/min of stirring rate, 8 g/L PEG6000, 1~1.5 times dilution with water, 55~60℃reaction temperature, then calcing and reducing at 850℃in H2 atmosphere. The futher experiments show that an ultrafine and uniform microstructure of (Ti,Mo)(C,N)-Ni cermet was obtained and there is no obvious surrounding structure can be found in the microstructure of the cermet; The fracture micrographs of the cermet show that the fracture is mainly characterized by inter-granular fractures and dimple fractures; the main toughening mechanisms of the cermet are crack deflection and crack bridge; the Ni3Ti phase is founded in the cermet; with the exception of fracture toughness, the mechanical properties of the cermet are better than cermet which perpared by traditional process; because excessive Ti&Mo atoms dissolved in binder phase, the magnetic properties of the cermets are not detected.
引文
[1]许育东,刘宁,石敏,等.纳米改性Ti(C,N)基金属陶瓷研究进展[J].硬质合金, 2005, 22(2): 112-116.
    [2]邱小林. Ti(C,N)基金属陶瓷的研究进展[J].材料导报, 2006, 20(Ⅵ): 420-427.
    [3] HumenikKjr., Parikh N.M.. Cermets:Ⅰ, Fundamental concepts related to microstructure and physical properties of cermet systems[J]. J. Amer. Ceram. Soc., 1956, 39(2): 60-63.
    [4] R. Kiefer. Uber neuartige Nitrid-und Karbonitrid-Hartemetall[J]. Metall, 1971, 25(1), 59-63.
    [5] R. Kiefer, P Etmayer. Modem Development in P/M, Vol. 5[M]. NewYork: Plenum Press, 1971.201-203.
    [6]魏红菊,吴一,龙飞,等.超细TiC粉体制备的研究现状及展望[J].材料导报:纳米与新材料专辑, 2008, (1): 112-114.
    [7]李奎,潘复生,汤爱涛. TiC、TiN、Ti(C,N)粉末制备技术的现状及发展[J].重庆大学学报(自然科学版), 2002, 25(6): 135-138.
    [8]杨锦,李芳,刘颖,等. Ti(C,N)粉末制备技术的研究及进展[J].硬质合金, 2005, 22(1): 52-54.
    [9] Qi F, Kang S. A study on microstructural changes in Ti(C,N)-NbC-Ni cermets[J]. Mater. Sci. Eng., 1998, A251: 276-285.
    [10] J. Joardar, S. W. Kim, S. Kang. Effect of nanocrystalline binder on the microstructure and mechanical properties of ultrafine Ti(C,N) cermets[J]. Mater. Sci. Eng., 2003, A360: 385-389.
    [11]晋勇,王玉环,胡希川,等.微波烧结金属陶瓷材料的工艺研究[J].工具技术, 2004, 38(9): 96-107.
    [12] P. Feng, W. H. Xiong, L. X. Yu, et a1. Phase evolution and microstrucmre characteristics of ultrafine Ti(C,N)-based cermet by spark plasma sintering[J]. Int. J. Refr. Metals&Hard Mater., 2004, 22: 133-138.
    [13] G.Q. Xiao, Q.C. Fan, M. Z. Gu. Dissolution-precipitation mechanism of self-propagating high-temperature synthesis of TiC-Ni cermet[J]. Mater. Sci. Eng., 2004, A382: 132-140.
    [14] T. Cutard, T. Viatte, G. Feusier, et al. Microstructure and high temperature mechanical properties of TiC0.3N0.3-Mo2C-Ni cermets[J]. Mater. Sci. Eng., 1996, A209: 218-227.
    [15]李鹏,胡耀波,熊惟皓.稀土元素Y对Ti(C,N)基金属陶瓷性能的影响[J].硬质合金, 2000,17(2):65-68.
    [16]刘宁,黄新民,周杰,等,崔昆. Er对Ti(C,N)基金属陶瓷结构和力学性能的影响[J].硅酸盐学报, 2000, 28(l): 72- 76.
    [17] Jinkwan Jung, Shinhoo Kang. Effect of ultra-fine powders on the microstructure of Ti(CN)–xWC–Ni cermets[J]. Acta Materialia, 2004, 52: 1379-1386.
    [18]杨天恩,熊计,郭智兴,等. Ti(C,N)基金属陶瓷芯/环结构的研究进展[J].硬质合金2010,27(1):55-64.
    [19]周泽华,丁培道. Ti( C,N)基金属陶瓷的添加成份研究现状[J].材料导报, 2000, (4): 21.
    [20]刘宁,赵兴中,刘灿楼,等.添加碳对Ti(C,N)基金属陶瓷组织和性能的影响[J].理化检验一物理分册, 1995, 3l(2): 13-15.
    [21] Ahn Sun-Yong,Kang Shin-hoo.Formation of core/rim structures in Ti(C,N)-WC-Ni cermets via a dissolution and reprecipition process[J]. J.Am.Ceram.Soc.,2000,83(6):1489-1494.
    [22]严明双,熊惟皓,范畴,等. Ti(C,N)基金属陶瓷添加成分的研究进展[J].硬质合金, 2005, 22(3):173-177.
    [23] Xu Shangzhi, Wang Huiping, Zhou Shuzhu. The influence of TiN content on properties of Ti(C,N) solid solution[J]. Mater. Sci. Eng., 1996,A209:294-297.
    [24]贺从训,夏志华,汪有明,等. Ti(C,N)基金属陶瓷的研究[J].稀有金属, 1999, (1): 4-12.
    [25] Xiong Ji. Guo Zhixing. Shen Baoluo. et al. The effect of WC, Mo2C, TaC content on the microstructure and properties of ultra-fine TiC0.7N0.3 cermet[J]. Materials and Design, 2007,28: 1689-1694.
    [26]何林,黄传真,黄勤,等. Mo2C含量对Ti(C,N)基金属陶瓷力学性能的影响[J].材料科学工程与学报, 2003, 21(2): 238-241.
    [27] P. Lindahl, P.Gustafson, U. Rolander, et al. Microstructure of model cermets with high Mo or W content[J]. Int. J. Refr. Metals&Hard Mater., 1999, 17: 411-421.
    [28] Won Tae Kwona, June Seuk Park, Seong-Won Kimb, et al. Effect of WC and group IV carbides on the cutting performance of Ti(C,N)cermet tools[J]. Int. J. of Mach.Tools& Manu., 2004, 44: 346-350.
    [29]郑勇,刘文俊,游敏,等. Cr3C2和VC对Ti(C,N)基金属陶瓷中环形相的价电子结构和性能的影响[J].硅酸盐学报, 2004, (4): 422-428.
    [30] Lay S, Hamar Thibault S, Lackner A. Location of VC in VC, Cr3C2 codoped WC-Co cermets by HREM and EELS[J]. Int. J. Refr. Metals&Hard Mater., 2002, 20: 6l-69.
    [31] Won Tae Kwon, June Seuk Park, Seong-Won Kimb, et a1. Effect of WC and group IV carbides on the cutting performance of Ti(C,N) cermet tools[J]. Int. J.of Mach.Tools& Manu., 2004, 44: 341-346.
    [32] S. Ahn, S. Kang. Effect of various carbides on the dissolution behavior of Ti(C0.7N0.3)in a Ti(C0.7N0.3)-30Ni system[J]. Int. J. Refr. Met. & Hard Mater., 2001, 19: 539-545.
    [33]陆庆忠,张福润,余立新. Ti(C,N)基金属陶瓷的研究现状及发展趋势[J].武汉科技学学报, 2002, 15(5): 43-46.
    [34]蔡威,刘宁.第二相碳化物对Ti(C,N)基金属陶瓷组织和性能的影响[J].硬质合金, 2008, 25(2): 126-130.
    [35]周书助,王社权,王零森,等.纳米Ti(C,N)基金属陶瓷烧结过程中的相成分变化[J].中南大学学报(自然科学版), 2007, 38(3): 404-408.
    [36]向导平.纳米Ti(C,N)的制备及机械球磨促进TiO2碳热氮化的研究[D].成都:四川大学, 2005.
    [37] Microstructural-property relationships for ultrafine grained materials[J]. Metallurgia, 2001, 8:7-9.
    [38]周书助.超细Ti(C,N)基金属陶瓷粉末成形性能及刀具材料的研究[D].长沙:中南大学, 2006.
    [39] E.T. Jeon, J. Joardar, S. Kang. Microstructure and tribe-mechanical properties of ultrafine Ti(C,N) cermets[J]. Int. J. Refr. Metals&Hard Mater., 2002, 20: 207-211.
    [40] Brookes K. The graded hard edge of genuine milling advance[J]. Metal Powder Report, 2004, 59(11): 18-23.
    [41]肖逸锋,贺跃辉,黄自谦,等.梯度结构硬质合金制备技术的研究进展[J].中国钨业, 2005,20(3):31-35.
    [42] J. Zackrisson, U. Rolander, G. Weinl, et a1. Microstructure of the surface zone in a heat-treated cermet materia1[J]. Int. J. Refr. Met. & Hard Mater., 1998, 16: 315-322.
    [43] J. Zackrisson, U. Rolander, Jansson, et a1. Microstructure and performance of a cermet material heat-treated in nitrogen[J]. Acta Mater, 2000, 48: 4281-4291.
    [44]郑勇,熊惟皓,宗校军,等. Ti(C,N)基金属陶瓷功能梯度材料的制备[J].粉末冶金技术, 2002, 20(4): 195-199.
    [45]晏鲜梅,熊惟皓,郑立允.热等静压制备Ti(C,N)基金属陶瓷功能梯度材料[J].机械工程材料, 2006, 30(5): 36-40.
    [46] Zhong Jie , Zheng Yong , Yuan Quan , Zhang Yixin , Yu Lixin,Fabrication of functionally graded Ti(C,N)-based cermets by double-glow plasma carburization[J]. Int. J. Refr. Metals& Hard Mater., 642–646.
    [47]张巨先,高陇桥,李发.包覆型陶瓷粉体的研究进展[J].硅酸盐通报, 2000(2):53-56.
    [48] W. S. Chung, S. Y. Chang, S. J. Lin. Electroless nickel plating on SiC powder with hypophosphite as a reducing agent[J]. Plating and Surface Finishing. 1996. 6: 68-74.
    [49] HATANO T, YAMAGUCHI T, SAKAMOTO W, et a1. Synthesis and characterization of BaTiO3-coated Ni particles[J]. J. Eur. Cer. Soc., 2004. (24):507-510.
    [50]史桂梅,张志东,杨洪才,等.化学镀法合成纳米Ag包覆A12O3复合粉[J].东北大学学报:自然科学版, 2004, 25(8):768-770.
    [51] Wei-Heng Shih, David Kisailus, Yen Wei. Silica coating on barium titanate particles[J]. Materials Letters, 1995(3), 24: 13-15.
    [52] Donghong Li, Jianxin Zhou, Xiangqian Shen, et al. Fabrication of magnetic nanosizedγ-FeNi coated ceramic core–shell microspheres by heterogeneous precipitation and thermal reduction[J]. Particuology, 2010 (8) :257–261.
    [53]关毅,程琳俨,张金元.非均相沉淀法在无机包覆中的应用[J].材料导报, 2006, 20(7): 88-90.
    [54] Lamer V K, Dinegar R T. Theory, production and mechanism of formation of monodispersed hydrosols [J] . J Am Chem Soc ,1950 ,72 (11) :4847-4853.
    [55] H. Nakamura, A. Kato, Effect of crystallization of alumina hydrate in preparation of alumina- coated composite particles[J], Ceram. Int., 18 (1992) 201–206.
    [56]陆佩文.无机材料科科学基础[M].武汉:武汉工业大学出版社, 1996, 8:123-156.
    [57]崔爱莉,王亭杰.二氧化钛表面包覆氧化硅纳米膜的热力学研究[J].高等学校化学学报, 2001, 22 (9):15-43.
    [58]邹建,高家诚.纳米TiO2表面包覆氧化铝的热力学[J].功能材料, 2004, 35(5):573-578.
    [59] Ajay Garg, Egon Matijevic. Preparation and properties of uniform coated inorganic colloidal particles:Ⅲ. Zirconium hydrous oxide on hematite[J]. J Colloid Interf. Sci.,1988, 126(1) : 243-250.
    [60] Mitchell T D, Jonghe L C. Processing and properties of particulate composites from coated powders [J]. J Am Ceram Soc, 1995, 78 (1):1994-1998 .
    [61]魏明坤,肖辉. Al2O3包覆石墨颗粒的制备及表征[J].硅酸盐学报, 2004, 32 (8) :961-965
    [62]卢寿慈.粉体加工技术[M].北京:中国轻工业出版社, 1999: 121-124.
    [63]刘为.纳米磁性金属/空心玻璃微珠壳—核结构复合微球的制备[D].镇江:江苏大学, 2008.
    [64]郦剑,朱璋跃,胡雄,等.陶瓷粉体表面化学镀技术[J]. 2006, 27(1):23-27.
    [65]李国军,黄校先,郭景坤. Al2O3/Ni金属陶瓷显微结构和力学性能的研究[J].无机材料学报, 2004, 19(3)547-552.
    [66]刘沙,张伟.超细硬质合金包覆粉末及其制造方法:中国, 101186990A[P]. 2008-05-28.
    [67]范景莲,银锐明,刘涛,等.纳米Fe、Mo包覆Si3N4颗粒的复合粉末及其制备方法:中国, 101234426A[P]. 2008-09-10.
    [68] YIN Rui-ming, FAN Jing-lian, LIU Xun. Preparation and sintering of nano Fe coated Si3N4 composite powders[J]. J. Cent. South Univ. Technol. ,2009, 16: 0184-0189.
    [69]银锐明,范景莲,刘勋,等. 2008中国粉末冶金新技术及难熔金属粉末冶金会议论文集[C].广州,中国金属学会, 2008: 130-137.
    [70]邵刚,温合静,刘钟升,等.不同制备方法对SiCP/Fe金属陶瓷性能的影响[J].稀有金属材料与工程, 2009, 38(增刊2):18-520.
    [71]黎寿山. SiC/Cu金属陶瓷复合材料的研究[D].郑州:郑州大学, 2007.
    [72]罗成,彭卫珍,周书助,等.非均相沉淀法制备包覆粉的研究现状[J].硬质合金,2010,27 (3):180-185.
    [73] SHEN Xiang-qian, LI Dong-hong, JING Mao-xiang. Coating of Fe, Ni onα-alumina micros- pheres by heterogeneous precipitation[J]. J. CENT. SOUTH UNIV. TECHNOL. 2006,13(1): 22-26.
    [74]张锐,王海龙,辛玲.放电等离子体烧结SiC-Cu金属陶瓷复合材料研究[J].郑州大学学报(工学版), 2004,25(4):41-44.
    [75]天津大学无机化学教研室.无机化学.北京:高等教育出版社[M], 2002.
    [76]裴小苗,司文元,刘欣,等.超声场中溶胶凝胶法制备纳米氧化铝粉体的研究[J].金刚石与磨料磨具工程, 2005, (6):71-74.
    [77]景茂祥,沈湘黔,李东红,等.纳米铁磁性合金包裹氧化铝复合微球的制备[J].硅酸盐学报, 2006, 34(5): 517-522.
    [78]叶大伦,胡建华.实用无机物热力学数据手册[M].北京:冶金工业出版社, 2002.
    [79]吴恩熙,雷贻文.超细硬质合金中晶粒生长抑制剂的作用[J].硬质合金, 2002,19(3):136- 139.
    [80] Lan Sun , Cheng-Chang Jia, Min Xian . A research on the grain growth of WC–Co cemented carbide[J]. Int. J. Refr. Metals&Hard Mater., 2007, 25: 121–124.
    [81]崔约贤,王长利.金属断口分析[M].哈尔滨:哈尔滨工业大学出版社, 2006: 52-66.
    [82]曾德麟.粉末冶金材料[M].北京:冶金工业出版社, 1989: 191-192.
    [83] Slavko Mentus, Biljana Tomic-Tucakovic, Divna Majstorovic, et a1. Gel-combustion synthesis of NiO–MoO3 mixtures and their reduction to Ni–Mo alloys[J], Materials Chemistry and Physics, 2008, 112:254–261.
    [84]万磊,程继贵,宋鹏.等. 2009全国粉末冶金学术会议论文集[C].长沙:中南大学出版社,2009: 41-44.
    [85] Guan Xiao-yan, Deng Jian-cheng. Preparation and electrochemical performance of nano- scale nickel hydroxide with different shapes[J]. Materials Letters, 2007, 61: 621–625.
    [86]向铁根.钼冶金[M].长沙:中南大学出版社, 2002.
    [87] Jun Kui Yang, Hu-Chul Lee. Microstructural evolution during the sintering of a Ti(C,N)- Mo2C-Ni alloy[J]. Materials Science and Engineering, 1996, A209:213-217.
    [88] Hun-Jae Chung, Jae-Hyeok Shim, Dong Nyung Lee. Thermodynamic evaluation andcalculation of phase equilibria of the Ti–Mo–C–N quaternary system[J]. Journal of Alloys and Compounds, 1999, 282(1): 142–148.
    [89] Young Kwan Kim, Jae-Hyeok Shim, Young Whan Cho, et a1. Mechanochemical synthesis of nanocomposite powder for ultrafine (Ti, Mo)C–Ni cermet without core-rim structure[J]. Int. J. Refr. Metals&Hard Mater., 2004, 22:193–196.
    [90] Shiquan Zhou, Wei Zhao, Weihao Xiong, et al. Thermodynamics of the formation of contiguity between ceramic grains and interface structures of Ti(C,N)-based cermets[J]. Int. J. Refr. Metals&Hard Mater., 2009, 27:740-746.
    [91]熊惟皓,胡镇华,崔崑. Ti(C,N)基金属陶瓷中碳化钨的界面行为[J].材料导报, 1998, 12(2):14-16.
    [92]徐恒钧.材料科学基础.北京:北京工业大学出版社[M], 2001: 286-287.
    [93] Sheng Chao, Ning Liu, Yupeng Yuan, et a1. Microstructure and mechanical properties of ulrafine Ti(C,N)-based cermets fabricated from nano/submicron starting powders[J].Ceram- ics International, 2005, 31: 851-862.
    [94]周书助,卓海宇,胡茂中.真空烧结金属陶瓷磁学性能的研究[J].硬质合金, 2005,22(4): 193-197.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700