用户名: 密码: 验证码:
煤岩电荷感应信号预测冲击地压研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
冲击地压是世界范围内煤矿矿井中最严重的自然灾害之一,预测对及时采取区域性防范措施和局部性解危措施十分重要,以电荷感应信号变化特征预测冲击地压是一种可行有效方法。本文用理论分析、室内实验及现场监测对煤岩体电荷感应信号规律及影响因素进行研究。
     建立单轴压缩煤岩变形电荷感应信号实验系统,研究了不同类型煤岩体在相同加载速率下电荷感应信号特征及其变化规律;同类型煤岩体在不同加载速率下电荷感应信号特征及其变化规律;煤岩体变形过程中电荷感应信号与抗压强度关系。得出不同加载速率下同类型煤岩体电荷感应信号随加载速率增大,电荷感应信号增加。不同类型煤岩体在相同加载速率下,其变形破裂过程中电荷感应信号幅值有随极限应力增加而增加趋势。
     建立了温度对煤岩产生电荷感应信号影响的实验系统,研究了岩体随温度变化过程中电荷感应信号特征及其变化规律。得出随温度升高,电荷感应信号增强;环境温度对电荷感应信号预测冲击地压几乎无影响。
     建立了煤岩体受摩擦对其电荷感应信号影响的实验系统,研究了煤岩体受摩擦过程中的电荷感应信号特征及其变化规律。得出煤岩体受摩擦过程中电荷感应信号与煤岩性质有较大关系,煤岩越硬,摩擦时产生的电荷感应信号值越高。
     根据实验结果分析得出,煤岩体电荷产生的主要机理是煤岩在受载过程中,煤岩颗粒、矿物质颗粒和胶结物相互之间会发生滑动、错动,因摩擦而产生电荷。
     煤岩电荷感应信号信息综合反映了冲击地压的主要影响因素,电荷感应信号值主要反映了煤岩体的受载程度及变形程度。采用煤岩电荷感应信号对冲击地压的危险性评价及预测预报是可行有效的,从监测到的结果就可以确定冲击地压发生的区域地点,这为我们采取相应和有效的防治措施提供了科学依据。
Rock burst is one of the worst natural disasters in worldwide coal mine,forecast for it and take timely measures to prevent the regional and local risk is very important, charge induction signal change features predicts percussive ground pressure is a feasible method。The rules and influence factors of coal rock deformation process charge induction signal in indoor experiment and field test is studied in this paper。
     Experiment system of charge induction coal and rock deformation signal under Uniaxial Compression is established,and signal characteristics and the changing laws in different types of coal and rock in the same loading rate under charge induction is studied; signal characteristics and the changing laws in the same type coal and rock under different loading rate under charge induction is studied; the relationship of coal rock mass deformation process charge induction signal and compressive strength relationship is studied. It is shown that charge induction signal increased with enlarged loading rate in different loading rate and different types of coal and rock;amplitude of charge induction signal increased with enlarged ultimate stress in same loading rate and different types of coal and rock.
     Experiment system of charge induction signal influenced with temperature is established,and signal characteristics and the changing laws of coal and rock with change of temperature is studied. The results indicate that charge induction signal increased with enhanced temperature, and environmental temperature has almost no influence to charge induction signal predicts rock burst.
     Experiment system of charge induction signal influenced with coal rock friction is established, and signal characteristics and the changing laws in the process of coal and rock by friction is studied, and obtained charge induction signal and coal rock properties have larger relationship by friction in the process of coal and rock, the coal rock harder, the charge induction signal value in friction is higher.
     The experimental results demonstrate that the main mechanism of coal and rock charge generation is the coal rock particle, mineral particles and cementation things happen between sliding, fault dislocation, for the friction and produce charge in the process of coal rock being loaded.
     The information of coal rock charge induction signal reflects the main factors influenced rock burst comprehensively, The amplitude of charge induction signal reflects the level of coal and rock loaded and deformed. Using coal rock charge induction signal to assess and predict rock burst risk is feasible and efficiently, the monitoring results can determine the regional location rock bursts occurred in, it provided scientific basis for us to take corresponding and effective prevention measures.
引文
[1]ΑбдуллабековКН.地壳中的电现象[M].学术期刊出版社,1990.
    [2]ВоробъевАА,СамохваловМАидр.Аномалъныеиз-мененияинтенсивностиестественногоимпулъсногоэлектромагнитногополявраионеТашкентапередэемлетрясе-нием,Уэб.геол.журн.,1976(2):9~11.
    [3]陈智勇,杜晓泉,陶如谦等.电荷感应与地震[M].北京:地震出版社,1998.
    [4]毛桐恩.中国震前电荷波观测研究进展.见:国家地震局科技监测司编,震前电荷波观测与实验研究文集,北京:地震出版社,1989.
    [5]彭嘉湖,胡俊杰,常跃武.震前电荷场异常的观测与机理探讨.震前电荷波观测与实验研究文集,北京:地震出版社,1989.100~104.
    [6]М.В.Курления,А.Г.Вострецов,Г.И.Кулаков,Г.Е.Яковицкая,Оструктуресигналовэлектромагнитногоизлученияисвязанныхснимиактахразрушенияобразцовгорныхпород.Физико-техническиепроблемыразработкиполезныхископаемых.2000,(1):5~11.
    [7]В.Д.Борисов,Спектрально-временнойанализвисследованиидинамикиразрушениягорныхпород.Физико-техническиепроблемыразработкиполезныхископаемых.№4, 2005г.
    [8] Nitson U. Electromagnetic emission accompanying fracture of quartz-bearing rocks. Geophysics Research letters, 1977(4):333~336.
    [9]徐为民,童芜生,吴培稚.岩石破裂过程中电荷感应的实验研究[J].地球物理学报,1985(2):47~54.
    [10]Фрид.В.И,Шабаров.А.И.идр,Формированиеэлектромагнитногоизлученияугольногопласта,ФТПРПИ,1992(2):40~47.
    [11]李均之,曹明,毛浦森等.岩石压缩实验与震前电荷感应的研究[J].北京工业大学学报,1982(4).
    [12]ШевцовГИиМигуновНИидрЭлектризцияполевьхштаповприце.формациииразраушенииДАНСССР,1975,225(2):313~315.
    [13] Ogawa T,Oike K. Electromagnetic radiation from rocks. J Geophys Res,1985, 90(D4):6245~6249
    [14] Brady B T, Rowell G A. Laboratory investigation of the electrdynamics of rock fracture. Nature,1986(321):488~492
    [15] Cress G O,Brady B T and Rowell G A. Sources of electromagnetic radiation from fracture of rock samples in laboratory. Geophys. Res. Lett.1987(14):331~334.
    [16] Yamada I,Masuda K,Mizutani H. Electromagnetic and' acoustic emission associated with rock fracture. Phys. Earth Planet. Inter. 1989,57:157~168.
    [17]何学秋,聂百胜,王恩元,等.矿井煤岩动力灾害电荷感应预警技术[J].煤炭学报,2007,32(1):56~59.
    [18]钱书清,郝锦绮,周建国,等.岩石受压破裂的ULF和LF电荷前兆信号[J].中国地震, 2003, 19(2):109~116.
    [19]郝锦绮,钱书清,高金田,等.岩石破裂过程中的低频电荷异常[J].地震学报,2003,25(1):102~111.
    [20]徐为民,童芜生,王自成.单轴压缩下岩样破坏过程中的发光现象[J].地震学报,1984(1):8~10.
    [21]孙正江,王丽华,高宏.岩石破裂时的电荷感应和光发射[J].地球物理学报,1986,29(5): 491~495.
    [22]郭自强,周大庄,施行觉,等.岩石破裂中的光声效应[J].地球物理学报,1988,31(1): 37~41.
    [23]郭自强,周大庄,施行觉,等.岩石破裂中的电子发射[J].地球物理学报,1988,31(5): 566~571.
    [24]郭自强,郭子祺,钱书清,等.岩石破裂中的电声效应[J].地球物理学报,1999,420): 74~83.
    [25]郭自强,尤峻汉,李高等.破裂岩石的电子发射与原子压缩模型[J].地球物理学报,1989,32(2):173~177.
    [26]郭子祺.岩石破裂中电荷感应的实验研究[D].北京:中国科学院和中国科技大学研究生院,1997.
    [27]朱元清,罗祥麟,郭自强,等.岩石破裂时电荷感应的机理研究[J].地球物理学报,1991,34(5):595~601.
    [28] Thiel David V. Electromagnetic emission (EME) from ice crack formation: Preliminary observations. Cold Regions Science and Technology, 1992, 21(1):49~60.
    [29] O'Keefe, Steven G Thiel and David V. Conductivity effects on electromagnetic emissions (EME) from ice fracture. Journal of Electrostatics,1996, 36(3):225~234.
    [30] Fujinawa Y, T Kumagai and K Takahashi. A study of anomalous underground electric field variations associated with a volcanic eruption. Geophys. Res. Lett.1992, 19: 9~12.
    [31] Yoshino, Takeo. Low-frequency seismogenic electromagnetic emissions as precursors to earthquakes and volcanic eruptions in Japan. Journal of Scientific Exploration, 1991, 5(1):121~125.
    [32] Johnston M. Review of electric and magnetic fields accompanying seismic and volcanic activity. Surveys in Geophysics, 1997,18:441~475.
    [33]ХатиашвилиНГ.论碱卤互素结晶体和岩石中裂隙形成时的电荷效应[C].地震地电学译文集.北京:地震出版社,1989: 149~158.
    [34]王恩元,何学秋,李忠辉,等.煤岩电荷感应技术及其应用[M].北京:科学出版社,2009.
    [35]李艳娜,王恩元,赵恩来.单轴压力下煤样表面电位实验[J].煤炭学报, 2009, 34(6): 806-809.
    [36]王静,王恩元,魏建平.煤岩电荷感应信号时间序列混沌特性分析[J].防灾减灾工程学报,2006,26(3):300~304.
    [37]聂百胜,何学秋,孙继平,等.瓦斯流动对电荷感应频谱的影响[J].北京科技大学学报,2003,25(6):510~514.
    [38]刘志远,陈英方.卫星预测地震研究进展综述[J].地震地磁观测与研究,2001, 22(4): 96~99.
    [39] Gokhberg M B, Pilipenko V A and Pohotelov O A. Satellite observations of electromagnetic emission over the epicentral region in the pre-earthquake stage. Doklady Academii Nauk.1983, 268(1):56~58.
    [40] Larkina V I, Migulin V V and Molchanov O A et al. Some statistical results on very low frequency radiowave emissions in the upper ionosphere over earthquake zones. Phys. Eareth Planet. Inter. 1989, 57: 100~109.
    [41] Gasev G A and Gufeld I L. Quantun theory of seismicity and seismo-ionospheric interaction. In: International workshop on seismo electromagnetics. Tokyo, March 3~5, 1997: 117~118.
    [42] Maltseva O A. Propagation of the seismogenic electromagnetic emission in the ionosphere modeling. In: International workshop on seismo electromagnetics. Tokyo, March 3~5,1997: 186 .
    [43] Korepanov V. The experimental study of electromagnetic emission in the ionospere. In: International workshop on seismo electromagnetics. Tokyo, March 3~5, 1997: 187~188.
    [44] M. E.佩列利曼,Н.Г.哈季阿什维利.破裂电荷感应理论研究[C].苏联地震预报研究文集,北京:地震出版社,1993:35~39.
    [45] P. III.基利凯耶夫,М.И.米罗什尼钦科.力载荷下的岩石电场[C].苏联地震预报研究文集,北京:地震出版社,1993:31~34.
    [46]熊皓.地震电荷前兆研究[C].国家地震局科技监测司编,震前电荷波观测与实验研究文集,北京:地震出版社,1989: 125~130.
    [47]郑联达.地震电荷波发射的一种机制[C].国家地震局科技监测司编,震前电荷波观测与实验研究文集.北京:地震出版社,1989: 138~146.
    [48] Enomoto Y, Akai M, Hashimoto H, Mori S and Asabe Y. Exoelectron emission: Possible relation to seismic geo-electromagnetic activities as a microscopic aspect in geotribology. In: Wear Proceedings of the 1stInternational Workshop on Microtribology (IWM),Oct 12~13, 1992, Morioka, Japan: 135~142.
    [49]王炽仑,杨仲乐,陈以旭,等.岩石破裂时的电荷感应[J].地球物理学报,1992,35(增刊):287~291.
    [50] Egorov P V, Ivanov V V and Kolpakova L A. Patterns in the electromagnetic pulsed radiation of alkali halide crystals and rocks. Soviet Mining Science, 1988, 24(1):58~61.
    [51] Robsman V A and Nikogosyan G N. Changes in emission spectra during crack development and rock failure. Transactions (Doklady) of the USSR Academy of Sciences: Earth Science Sections, 1990, 306(3):26~29.
    [52] Kurlenya M V, Yakovitskaya G E and Kulakov G I. Stages in the fracturing process based on EME studies. Soviet Mining Science, 1991, 27(1):39~43.
    [53] Ivanov V V, Egorov P V, Kolpakova L A and Pimonov A G. Crack dynamics and electromagnetic emission by loaded rock masses. Soviet Mining Science, 1988, 24(5):406~412.
    [54] Ohtsuki Yoshi-Hiko and Kamogawa Masashi. Plasmon-decay model for origin of electromagnetic wave noises in the earthquakes. In; IEEE International Symposium on Electromagnetic Compatibility Proceedings of the 1997 International Symposium on Electromagnetic Compatibility, EMC May 21~23 1997,Beijing, China: 80~82.
    [55] Kamogawa Masashi and Ohtsuki Yoshi-Hiko. Dipole-image model for origin of electromagnetic wave noises in the earthquakes. In: IEEE International Symposium on Electromagnetic Compatibility Proceedings of the 1997 International Symposium on Electromagnetic Compatibility, EMC May 21~23 1997, Beijing, China: 83~85.
    [56]钱书清,任克新,吕智.地震电荷感应前兆不同步现象物理机制的实验研究[J].地震学报,1998, 20(5): 535~540.
    [57]赵扬锋,潘一山.单轴压缩下花岗岩电荷变化的实验研究[J].辽宁工程技术大学学报,2009,28(2):221~224.
    [58]付琳,潘一山,李国臻.岩体电荷检测仪的研制[J].辽宁工程技术大学学报,2008,27(增刊):100~112.
    [59] Maxwell M. Electromagnetic responses from seismically excited targets B:nonpiezo- electric phenomena. Exploration Geophysics, 1992,23:201~208.
    [60] Russell R D. Electromagnetic responses from seismically excited targets, A:piezo- electric phenomena at Humboldt, Austrilia. Exploration Geophysics, 1992,23:281~286.
    [61]何学秋,刘明举.含瓦斯煤岩破坏电磁动力学.徐州:中国矿业大学出版社,1995.
    [62]何学秋,刘明举,李增华.含孔隙气体煤岩破坏过程的电磁辐射时机理,中国科协第二届青年学术年会卫星会议,1994.10:356~360.
    [63]王恩元,何学秋.含瓦斯煤断裂电磁辐射的实验研究.煤炭工程师,1998(3):2~6.
    [64]吴寿鍠,丁士章.电动力学(第二版).西安:西安交通大学出版社,1993:154~170.
    [65] Savage J C. Radiation from a tensile fracture. J. Geophys. Res, 1963, 68:6345~6358.
    [66]姚孝新.破裂速度和地震.地球物理学报,1976,19(2).
    [67] Johnson T L,Scholz C H. Dynamic properties of stick-slip friction of rock. J. Geophys. Res ,1976,81(5).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700