用户名: 密码: 验证码:
铷原子双共振光抽运光谱及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
原子激发态间的光谱具有无多普勒展宽的优点,不仅在精密测量、多光子激光冷却与俘获等领域具有重要作用,而且对一些实用化的二级频率标准的研究发展也具有重要意义。但通常情况下,由于原子遵循玻尔兹曼分布,原子在激发态的布居数极少。传统光学双共振(OODR:Optical-Optical Double Resonance)技术是获得原子激发态间光谱的有力工具,在理论和实验方面均早已得到深入研究和广泛应用。但在某些原子体系中,由于中间态的自发辐射率较大,致使谱线的信噪比较低。而新型的双共振光抽运(DROP:Double-Resonance Optical Pumping)技术,是通过探测基态原子布居数在双光子光抽运条件下的变化来反映激发态间的跃迁光谱,与OODR相比具有平坦的背景和高分辨率的优点。本文主要对以下几个方面进行了研究:
     (1)对铷原子5P3/2-4D3/2(4D5/2)的DROP光谱和OODR光谱进行了实验研究对比,获得了高分辨的激发态间的光谱。
     (2)研究了光场偏振组态、功率、光路调整状态(同向和相向)对DROP光谱特性的影响。在此基础上,选择了合适的实验参数来获得高信噪比、窄线宽的87Rb5P3/2-4D3/2(4D5/2)间的DROP谱线。
     (3)利用激发态87Rb5P3/2(F=3)-4D3/2(F=3)的跃迁线对1529nm的光栅外腔半导体激光器进行了无频率调制激光稳频。当采用抽运光和探测光相向传输情况下的DROP光谱技术对激光器锁频后,300s典型的残余频率起伏约为650kHz,与同向传输情况下的OODR光谱及DROP光谱稳频相比,激光器的频率起伏有了显著的改善。探索建立一种可用于密集波分复用系统(DWDM:Dense Wavelength Division Multiplexing)光纤通讯C波段196THz附近的频率标准,可望用于DWDM信道的校准。
     (4)铷原子激发态间的超精细结构分裂一般很小,使得采用普通的光谱学技术很难进行精确测量。我们在获得高信噪比、窄线宽的DROP光谱的基础上,采用比较简单的系统对铷原子激发态超精细分裂进行测量:采用集成波导位相型电光调制,结合光学腔频谱分析测量4D3/2和4D5/2激发态超精细分裂。
Doppler-free laser spectroscopy for the transitions between atomic excited states, not just plays an important role in the field of high-resolution spectroscopy, multi-photon laser cooling and trapping of atoms, but also has great significance for the research of practical second-order frequency standards. But it difficult to acquire a laser spectrum in the transition between atomic excited states due to the lower thermal equilibrium population in excited states. The optical-optical double-resonance (OODR) method as a sophisticated technique has been widely utilized to approach a spectrum for transitions between atomic excited states; it has been widely studied and used in many theoretical and experimental researchers. However, the signal-to-noise ratio (SNR) of OODR spectrum is inadequate in atomic system with large spontaneous emission rates, which hampers its development. The main idea of DROP, a novel optical pumping spectroscopic technique, is to monitor the population of the atomic ground state under the condition of two-photon and optical pumping instead of the excited state. Compared with the traditional OODR spectrum, double-resonance optical-pumping (DROP) spectrum has advantage in flat base line and high-resolution spectrum. This paper focuses on the following aspects for research.
     (1) In order to get the high-resolution spectra of excited states for 87Rb 5P3/2-4D3/2(4D5/2) transition, we investigated and comparable the spectra for 87Rb 5P3/2-4D3/2(4D5/2) transition by use of the DROP and OODR techniques.
     (2) The influence of polarization combination, the laser power, and the alignment of coupling and probe laser beams (co-propagating and counter-propagating configurations) on the properties of DROP spectrum was discussed. On this basis, high-SNR and narrow line-width DROP spectra of 87Rb 5P3/2-4D3/2(4D5/2) transition is achieved under a proper condition.
     (3) The frequency of a 1529nm external- cavity diode laser (ECDL) is locked to 5P3/2(F'=3)-4D3/2(F"= 3)hyperfine transition by modulation-free frequency. When using DROP technique of counter-propagating configuration which coupling and probe laser beams counter-propagate along the Rb vapor cell. The result of residual frequency jitter after being locked is~650kHz within 300 s. This result is clearly much better than that in case of frequency stabilization by using OODR and DROP techniques of co-propagating configuration. We explore to establish a frequency reference in the vicinity of 196THz which belong to C-band of Dense Wavelength Division Multiplexing (DWDM) systems of optical telecommunication, which is expected to calibrate the optical channels.
     (4) It's difficult to measure hyperfine splitting of excited states of rubidium atoms by using common spectroscopic technology due to it's hyperfine splitting are usually small. On the basis of obtaining a high SNR and narrow line-width DROP spectra, employing the integrated guided-wave phase-type electro-optic modulator (EOM) and the spectral analysis technique of optical cavity, the hyperfine splitting of 4D3/2 and 4D5/2 states are measured precisely.
引文
[1]A. Krishna, K. Pandey, A. Wasan, and V. Natarajan. High-resolution hyperfine spectroscopy of excited states using electromagnetically induced transparency. Europhys. Lett.,2005,72,221-227.
    [2]S. M. Iftiquar, G. R. Karve, and V. Natarajan. Subnatural linewidth for probe absorption in an electromagnetically-induced-transparency medium due to Doppler averaging. Phys. Rev. A,2008,77,0638071.
    [3]S. Chu, L. Hollberg, J. E. Bjorkholm, A. Cable, and A. Ashkin. Three-dimensional viscous confinement and cooling of atoms by resonance radiation pressure. Phys. Rev. Lett.,1985,55,48-51.
    [4]A. G. Sinclair, McDonald, B. D. Riis, E. Duxbury, and G. Affiliation. Double resonance spectroscopy of laser-cooled Rb atoms. Opt. Commun.,1994,207-212.
    [5]C.Monroe, W.Swann, H.Robinson and C.Wieman. Very cold trapped atoms in a vapor cell. Phys. Rev. Lett.,1990,65,1571-1574.
    [6]K. Kozuma, M, Kourogi and M. Ohtsu. Frequency stabilization linewidth reduction and fine detuning of a semiconductor laser by using velocity-selective optical pumping of atomic resonance line. Appl. Phys. Lett.,1992,61,1895-1897.
    [7]K. B, MacAdam, A. Steinbachand, C. Wieman. A narrow-band tunable diode laser system with grating feedback, and a saturated absorption spectrometer for Cs and Rb. Am. J. Phys.,60,1098-1111.
    [8]C. Wieman and T. W. Hanch. Doppler-free laser polarization spectroscopy. Phys. Rev. Lett.,1976,36,1170-1173
    [9]Y. Yoshikawa, T. Umeki, T. Mukae, Y. Torii, and T. Kuga. Frequency stabilization of a laser diode with use of light-induced birefringence in an atomic vapor. Appl. Opt., 2003,42,6645-6649.
    [10]王婧,杨保东,何军,张天才,王军民.采用偏振光谱对外腔半导体激光器稳频时反馈环路带宽的影响.光学学报,2009,29,425-430.
    [11]W.Demtroder. Laser spectroscopy. Berlin, Springer,2003,439-497.
    [12]陆同兴,路轶群.激光光谱技术原理及应用.合肥,中国科学技术大学出版社,2009,216-231.
    [13]C. J. Foot. Atomic Physics. Oxford University Press,2005,63-168.
    [14]A. J. Olson, E. J. Carlson, and S. K. Mayer. Two-photon spectroscopy of rubidium using a grating-feedback diode laser. Am. J. Phys.,2006,74,218-223.
    [15]R. Boucher, M. Breton, N. Cyr, and M. Tetu. Dither-free absolute frequency locking of a 1.3 μm DFB laser on 87Rb. IEEE Photon. Technol. Lett,1992,4,327-329.
    [16]杨保东,赵江艳,梁强兵,杨建峰,何军,张天才,王军民.室温下铯原子气室中6P3/2-8S1/2激发态跃迁的速度选择光谱.量子光学学报,2009,15,180-184.
    [17]T. T. Grove, V. Sanchez-Villicana, B. C. Duncan, S. Maleki and P. L. Gould. Two-photon two-color diode laser spectroscopy of the Rb 5D5/2 state. Physica Scripta,1995,52,271-276.
    [18]K. L. Corwin, I. Thomann, T. Dennis, R. W. Fox, W. Swann, E. A. Curtis, C. W. Oates, and M. F. Yan. Absolution-frequency measurements with a stabilized near-infrared optical frequency comb from a Cr:forsterite laser. Opt. Lett.,2004,29,397-398.
    [19]J. Ye, S. Swartz, P. Jungner, and J. L. Hall. Hyperfine structure and absolute frequency of the 87Rb 5P3/2 state. Opt. Lett.,1996,21,1280-1282.
    [20]W. K. Lee, H. S. Moon, and H. S. Suh. Measurement of the absolute energy level and hyperfine structure of the 87Rb 4D5/2 state. Opt. Lett.,2007,32,2810-2812.
    [21]R. Brown, S. Wu, T. Plisson, W. Phillips, and J.V. Porto. Multiphoton magneto-optical trap. Phys. Rev. Lett.,2009,103,173003.
    [22]T. Chaneliere, D. N. Matsukevich, S. D. Jenkins, T. A. B. Kennedy, M. S. Chapman, and A. Kuzmich. Quantum telecommunication based on atomic cascade tranditions. Phys. Rev. Lett,2003,96,093604.
    [23]H. S. Moon. Frequency stabilization of 1.3μm laser diode using double resonance optical pumping in the 5P3/2-6S1/2 transition of Rb atoms. Appl. Opt.,2008,47, 1097-1102.
    [24]Baodong Yang, Jiangyan Zhao, Tiancai Zhang and JunminWang. Improvement of the spectra signal-to-noise ratio of caesium 6P3/2-8S1/2 transition and its application in laser frequency stabilization. J. Phys. D:Appl. Phys.,2009,42,085111.
    [25]H. S. Moon, L. Lee, and J. B. Kim. Double-resonance optical pumping of Rb atoms. Opt. Soc. Am. B,2007,24,2157-2164.
    [26]K. J. Boller, A. Imamoglu, and S. E. Harris. Observation of electromagnetically induced transparency. Phys. Rev. Lett.,1991,66,2593-2596.
    [27]J. E. Field, K.H. Hahn, and S.E. Harris. Observation of electromagnetically induced transparency in collisionally broadened lead vapor. Phys. Rev. Lett.,1991,67, 3062-3065.
    [28]M. Xiao, Y. Li, S. Jin, and J. Gea-Banacloche. Measurement of dispersive properties of electromagnetically induced transparency in rubidium atoms. Phys. Rev. Lett., 1995,74,666-669.
    [29]Y. Q. Li, and M. Xiao. Observation of quantum interference between dressed states in an electromagnetically induced transparency. Phys. Rev. A,1995,51,4959-4962.
    [30]Shujing Li, Xudong Yang, Chunhong Zhang, Changde Xie, and Hai Wang. Enhanced cross-phase modulation based on a double electromagnetically induced transparency in a four-level tripod atomic system. Phys. Rev. Lett.,1998,101,073602.
    [31]J. Gea-Banacloche, Y. Q. Li, S. Z. Jin, and M. Xiao Electromagnetically induced transparency in ladder-type inhomogeneously broadened media:theory and experiment. Phys. Rev. A,1995,51,756-584.
    [32]Baodong Yang, Qiangbing Liang, Jun He, Tiancai Zhang, and Junmin Wang. Narrow line-width double-resonance optical pumping spectrum due to electromagnetically-induced transparency in ladder-type inhomogeneously-broadened media. Phys. Rev. A,2010,81,043803.
    [33]Baodong Yang, Jing Gao, Tiancai Zhang, and Junmin Wang. Electromagnetically induced transparency without a Doppler background in multi-level ladder-type cesium atomic system. Phys. Rev. A,2011,83,013818.
    [34]Baodong Yang, Jing Gao, Qiangbing Liang, Jie Wang, Tiancai Zhang, and Junmin Wang. Double-resonance optical-pumping effect and ladder-type electromagnetically-induced transparency signal without Doppler background in Cesium atomic vapor cell. Chinese Phys. B,2011,4,044202.
    [35]H. S. Moon, W. K. Lee, and J. B. Kim. Double resonance optical pumping spectrum in electromagnetically-induced transparency signal. Opt. Express,2008,16, 12163-12170.
    [36]A. K. Mohapatra, T. R. Jackson, and C. S. Adams. Coherent optical detection of highly excited Rydberg states using electromagnetically induced transparency. Phys. Rev. Lett.,2007,98,113003.
    [37]Jianming Zhao, Xingbo Zhu, Linjie Zhang, Zhigang Feng, Changyong Li, and Suotang Jia. High sensitivity spectroscopy of cesium Rydberg atoms using electromagnetically induced transparency. Opt. Express,2009,17,15821-15826.
    [38]M. Poulin, C. Latrasse, N. Cyr, and M. Tetu. An absolute frequency reference at 192.6 THz 1556 nm based on a two-photon absorption line of rubidium at 778 nm for WDM communication system. IEEE Photon. Technol. Lett.,1997,9,1631-1633.
    [39]F. E. Becerra, R. T. Willis, R.L. Rolston, and L. A. Orozco. Two-photon dichroic atomic vapor laser lock using electromagnetically induced transparency and absorption. J. Opt. Soc. Am. B,2009,26,1315-1320.
    [40]M. Ohtsu and E. Ikegami, Frequency stabilization of 1.5 μm DFB laser using internal second harmonic generation and atomic 87Rb line. Electron. Lett.,1989,25,22-23.
    [41]S. Masuda, A. Seki, S. Niki. Optical frequency standard by use a 1560nm diod laser locked to saturated absorption lines of rubidium vapor. Appl. Opt.,2007,46, 4780-4785.
    [42]Hsiang-Chen Chui, Yi-Wei Liu, Jow-Tsong Shy, Sen-Yen Shaw, R. V. Roussev, and M. M. Fejer Frequency-Stabilized 1520-nm Diode Laser with Rubidium 5S1/2 →7S1/2 Two-Photon Absorption. Appl. Opt.,2004,43,6348-6351.
    [43]杨建峰,杨保东,高静,张天才,王军民.1560nm连续半导体激光经PPLN倍频及经铷吸收光谱稳频.量子光学学报,2010,16,41-47.
    [44]M. Ohtsu, H. Kotani, and H. Tagawa. Spectral measurements of NH3 and H2O for pollutant gas monitoring by 1.5μm InGaAsP/InP lasers. Jpn. J. Appl. Phys.1983,22, 1553-1557.
    [45]K. Nakagawa, Y Sato, M. Musha, and K. Ueda. Modulation-free acetylene-stabilized lasers at 1542 nm using modulation transfer spectroscopy. Appl. Phys. B,2005,80, 479-482.
    [46]C. S. Edwards, H. S. Margolis, G. P. Barwood, S. N. Lea, P. Gill, and W. R. C. Rowley. High-accuracy frequency atlas of 13C2H2 in the 1.5μm region. Appl. Phys. B,2005, 80,977-983.
    [47]H. S. Moon, W. K. Lee, L. Lee, and J. B. Kim. Double resonance optical pumping spectrum and its application for frequency stabilization of a laser diode. Appl. Phys. Lett.,2004,85,3965-3967.
    [48]Jing Gao, Jie Wang, Baodong Yang, Tiancai Zhang, and Junmin Wang. Double-resonance optical-pumping spectra of rubidium 5S1/2-5P3/2-4D3/2 transitions and frequency stabilization of 1.5μm laser. Proc. SPIE,2010,7846,784618.
    [49]高静,王杰,杨保东,郭善龙,张天才,王军民.铷原子双共振激发态光抽运光谱及其在1.5微米半导体激光器稳频中的应用.量子光学学报,2011,17,64-69.
    [50]陈星,潘正权.Hg绿谱线超精细结构分析及相互作用常数计算.大学物理,2006,25,36-39.
    [51]H. S. Moon, W. K. Lee, and H. S. Suh. Hyperfine-structure-constant determination and absolute- frequency measurement of the Rb 4D3/2 state. Phys. Rev. A,2009,79 0625031.
    [52]周炳琨,高以智,陈倜嵘,陈家骅.激光原理.国防工业出版社,2007,25-63.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700