用户名: 密码: 验证码:
六株溶磷菌与四株固氮菌互作效应及其菌剂对苜蓿促生效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
利用钼锑抗比色法、Salkowski比色法和平板对峙等方法研究了6株溶磷菌(Jm170、Jm92、Lx191、Lx22、Jx59、Lx81)与4株固氮菌(W5、N4、G、S11)互作效应,测定了各菌株组合对环境因素的响应、溶磷、分泌植物生长激素(IAA)、拮抗植物病原真菌等特性。同时,利用盆栽试验测定单一及复合菌剂对苜蓿(Medicago sativa L.)生长的影响,结果表明:
     1.供试的6株溶磷菌和4株固氮菌间无拮抗现象,可以混合培养。与各菌株单独培养相比,溶磷菌和固氮菌混合培养对温度、pH值和盐分等环境因子有更广适应性。
     2.与各菌株单独培养相比,溶磷菌和固氮菌两两混合培养时,大多数混合体系溶磷能力增强,其中Jx59+G组合、Lx22+G组合和Jm92+G组合溶磷量分别为306.26 mg/L、291.43 mg/L和235.22 mg/L,较两菌株单独培养之和增加了分别增加了42.28%、46.91%、52.02%;少数混合体系溶磷能力减弱,其中Lx191+W5组合、Jx59+N4组合、Jm92+S11组合较溶磷菌株单独培养时分别降低44.88%、32.52%、16.28%。
     3.溶磷菌和固氮菌多菌株混合组合中,Jm92+Lx22+G组合溶磷量最高,为330.42 mg/L,与Jm92+G组合和Lx22+G组合相比增加40.47%和13.38%,Jm92+Lx22++S11+G组合的溶磷量也较高,为322.55 mg/L,与Jm92+Lx22+G组合相比下降2.43%。
     4.大部分溶磷菌和固氮菌组合混合培养液有机酸含量较单独培养显著升高;溶磷菌单独培养时,溶磷量、pH值和有机酸含量存在显著相关性,但混合培养时组合体系的溶磷量、pH值和有机酸含量相关性较弱。
     5.溶磷菌和固氮菌单独培养时,固氮菌G菌株分泌生长激素的能力最强,为37.34μg/ml;溶磷菌和固氮菌两两组合培养时,Lx22+G和Jm92+N4组合分泌生长激素量最多的,分别为36.71μg/ml和33.19μg/ml,Jm92+N4、Lx191+N4和Jx59+N4组合均较组合中两菌株单独培养之和提高428.81%、162.5%和7.89%。Lx191+Lx22+G组合分泌生长激素量最高,为41.15μg/ml。
     6.溶磷菌和固氮菌两两混合培养的48个组合中,只有9个组合对辣椒立枯丝核菌、西瓜尖镰孢菌和棉花立枯病菌有抑制作用,Jm92+N4对三种病原菌的抑菌率最高,分别为80.38%、79.06%和75.12%。
     7.与试管斜面培养法、蒸馏水保存法相比,真空冷冻干燥法保存的溶磷菌溶磷能力下降较少,建议长时间保存菌种使用该方法。
     8.单菌株及混合菌株组合处理与对照相比均可提高苜蓿株高、根长、根瘤数、地上植物量和地下植物量,与单菌株接种处理相比,混合接种处理促生效果更好,其中Jm92+Lx22+S11+G处理促生效果最好,地上植物量较对照提高121.21%,其次为Jm92+Lx22+G处理和Jm92+Lx22+N4+S11处理,地上植物量较对照提高69.24%和60.15%
     9.混合菌株较单菌株能更好的促进苜蓿对氮、磷的吸收,Jm92+Lx22+S11+G处理最好,苜蓿含氮量和含磷量较对照有显著提高,其次为Jm92+Lx22+G处理和Jm92+Lx22+N4+S11处理,这三种组合有望成为苜蓿新的根际接种剂或菌肥。
Interaction effect of six phosphate solubilizing bacteria (Jm170, Jm92, Lx191, Lx22, Jx59, and Lx81) and four nitrogen-fixing bacteria (W5, N4, G, S11) were studied by using Molybdenum blue, Salkowski colorimetry and Plate duel culture. Characteristics of responsing to environmental factors, solubilizing phosphorus, secreting indole acetic acid (IAA) and antagonizing plant pathogenic fungi were tested. The effects of the growth of alfalfa (Medicago sativa L.) under the treatments of single strain and mixed strains inoculum were tested based on pot culture as well. The results showed as follow:
     1. There was no antagonism among six phosphate solubilizing strains and four nitrogen-fixing bacteria strains, so they can be cultured mixed. Compare with single strain, mixed strains of phosphate solubilizing bacteria and nitrogen-fixing bacteria had a wider range of adaptation, for instance, the culture temperature, the pH, the salinity.
     2. The phosphorus-solubilizing ability of most mixed bacteria strains was significantly increased compared with single strain. The phosphate-solubilization capacity of the treatments of Jx59+G, Lx22+G and Jm92+G were 306.26 mg/L, 291.43 mg/L and 235.22 mg/L, which were higher than the sum of the two strains cultured alone by enhancing 42.28%, 46.91% and 52.02% respectively. The phosphorus-solubilizing ability of a small number of mixed bacteria strains significantly decreased compared with single strain. The phosphorus-solubilizing capacity of the treatments of Lx191+W5, Jx59+N4 and Jm92+S11 were lower than bacteria strains cultured alone by reducing 44.88%, 32.52% and 16.28% respectively.
     3. The phosphorus-solubilizing ability of treatment of Jm92+Lx22+G was the highest in the mixed strains of phosphate-solubilizing bacteria and nitrogen-fixing bacteria, which was 330.42 mg/L, by enhaning 40.47% and 13.38% compared with the treatments of Jm92+G and Lx22+G respectively. The phosphorus-solubilizing ability of the treatment of Jm92+Lx22++S11+G was also high, which was 322.55 mg/L, by decreasing 2.43% compared with the treatments of Jm92+Lx22+G.
     4. The organic acids content of most mixed bacteria strains was significantly increased compared with the single strain. The phosphorus-solubilizing capacity was related to the pH and the organic acids content prominently, when phosphate solubilizing bacteria cultured alone. But the phosphorus-solubilizing capacity was hardly related to the pH and the organic acids content, when phosphate solubilizing bacteria and nitrogen-fixing bacteria cultured mixed.
     5. Strain G had the most active ability to produce IAA, which up to 37.34μg /ml, when phosphate solubilizing bacteria and nitrogen-fixing bacteria cultured alone. Treatments of Lx22+G and Jm92+N4 had a stronger ability to produce IAA than other treatments, which was up to 36.71μg /ml and 33.19μg /ml when phosphate solubilizing bacteria and nitrogen-fixing bacteria cultured mixed. The ability to produce IAA of treatments of Jm92+N4, Lx191+N4 and Jm92+N4 were higher than the sum of the two strains cultured alone by enhancing 428.81%, 162.5% and 7.89% respectively. Among all the treatments, Lx191+Lx22+G had the strongest ability to produce IAA, which was 41.15μg/ml.
     6. Among the 48 treatments of phosphate solubilizing bacteria and nitrogen-fixing bacteria cultured mixed, only 9 treatments possessed the positive antagonism, which antagonized against Rhizoctonia solani (pepper strain), Fusarium oxysporum f. Niveum and Rhizoctonia solani (cotton strain). Inhibition ratio of treatment of Jm92+N4, which antagonize against three plant pathogenic fungi, was the highest, 80.38%, 79.06% and 75.12% respectively.
     7. The phosphorus-solubilizing ability of phosphate solubilizing bacteria preserved by the method of Vacuum Freeze-drying Preservation was stronger than the method of Periodic Transplantation Preservation and Distilled Water Preservation. It was a better choice to preserve phosphate solubilizing bacteria for the long time by the Freeze-drying Preservation.
     8. Single and compound inoculum treatments had an obvious effect on the height, the root length, the nodule number, the above-ground biomass and the underground biomass of alfalfa, compared with control. Compound inoculum treatment had a better effect than single inoculum treatment on the quality of alfalfa growth. The treatment of Jm92+Lx22+S11+G had more benefit than other treatments, and the above-ground biomass increased 121.21% compared with control. Treatments of Jm92+Lx22+G and Jm92+Lx22+N4+S11 also had a better effect so that the above-ground biomass increased 69.24% and 60.15% respectively compared with control.
     9. Mixed bacteria strains were better than single bacteria strain on the absorption of phosphorus and nitrogen on alfalfa, among which the treatment of Jm92+Lx22+G had the best effect. Nitrogen and phosphorus content of alfalfa increased than control, among which the treatments of Jm92+Lx22+G and Jm92+Lx22+N4+S11 had better effect also. These three mixed strains were expected to become the new rhizosphere inoculant or the biofertilizer of alfalfa.
引文
[1]章家恩,刘文高.微生物资源的开发利用与农业可持续发展[J].土壤与环境, 2001 (2):154-157
    [2] Hafeez, Y. F., Yasmin, S., Ariani, D., Rahman, M., Zafar, Y., and Malik, K. A. 2006. Plant growth-promoting bacteria as biofertilizer. Agron. Sustain. Dev. 26:143–150
    [3] Suneja, Pooja, Dudeja, S. S. and Narula, Neeru. 2007. Development of multiple co-inoculants of different biofertilizers and their interaction with plants', Archives of Agronomy and Soil Science, 53:2, 221– 230
    [4] Stamford, N.P., Santos, P.R., Santos, C.E.S., Freitas, A.D.S., Dias, S.H.L., and Lira, M.A. 2007. Agronomic effectiveness of biofertilizers with phosphate rock, sulphur and Acidithiobacillus for yam bean grown on a Brazilian tableland acidic soil. Bioresource Technology 98: 1311-1318
    [5]唐勇,陆玲,杨启银等.解磷微生物及其应用的研究进展[J].天津农业科学,2001,7(2):1-4.
    [6]梁绍芬,姜瑞波.解磷微生物肥料的作用和应用.土壤肥料,1994,2:46-48.
    [7]尤崇灼,姜通明,宋鸿遇等.生物固氮[M].北京:科学出版社,1987:128-135
    [8]董宽虎主编.苜蓿产业化生产与加工利用[M].北京:金盾出版社,2002:3-7.
    [9]唐勇,陆玲,杨启银等.解磷微生物及其应用的研究进展[J].天津农业科学,2001,7(2):1-4.
    [10]鲁如坤,时正元,钱承梁等.磷在土壤中有效性的衰弱[J].土壤学报,2000,37(3):323-329.
    [11]陈文新.土壤与环境微生物学[M].北京:北京农业大学出版社,1990:138-144.
    [12]赵小蓉,林启美.微生物解磷的研究进展[J].土壤肥料, 2001,5(3): 7-11.
    [13] Abd alla M H.1994. Use of organic phosphorus by Rhizobium legume inosarum biovarviceae phosphatases.Biol Fertil Soil,18:216-218
    [14]王光华,赵英,周德瑞等.解磷菌的研究现状与展望[J].生态环境,2003,12(1):96.
    [15] Elliott J M,Mathre D E,Sands D C.Identification andcharacterization of rhizosphere-competent bacteria of wheat[J].Appl Enroron Microbiol,1987,53(2):2793-2799.
    [16] Kabznilson H,Peterson E,Rouatt J W.Phosphate-dissolv-ing microorganisms on seed and in the root zone of plants[J].Canadean Journal of Botang,1962,40(9):1181-1186.
    [17]赵小蓉,林启美.四种不同生态环境中解磷细菌的数量及种群分布[J].土壤与环境,2000 (1):34-37.
    [18]夏红珍,朱越雄,王芹等.桑园土壤理化性状与土壤磷细菌存在量的关系[J].蚕业科学,1997,25(1):57-58.
    [19]林启美,王华,赵小蓉等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学通报,2001,28(2):26-30.
    [20]林启美,赵小蓉,孙炎鑫等.四种不同生态系统的中解磷细菌数量及种群分布[J].土壤与环境,2000,9(1):34-37.
    [21] Ponmurugan P, Gopi C.In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria[J]. African Journal of Biotechnology.2006.5(4):348-350
    [22] KABZNELSON H,PETERSON E A,ROUATT J W. Phosphate dissolving microorganisms on seed and in the root zone of plants[J].Canandian Journal of Botany,1962.40: 1181-1186.
    [23]尹瑞林.我国旱地土壤溶磷微生物[J].土壤,1988(2):688-703.
    [24] Agnihotri V P. Solubilization of insoluble phosphates by some soil fungi isolated from nursery .Can. J. Microbiol. 1970.16: 877-880.
    [25]姜成林,徐丽华.微生物资源学[M].北京:科学出版社,1997:138-145.
    [26]南京农业大学.土壤农化分析(第二版) [M].北京:农业出版社,1996:69,311-312.
    [27]焦如珍,杨承栋,孙启武.细菌肥料菌株对无效磷的转化利用[J].林业科学,2005,41,(4):194-198.
    [28]金术超,杜春梅,平文祥等.解磷微生物的研究进展[J].微生物学杂志,2006,26,(2):73-78.
    [29]钟传青,黄为一.不同种类解磷微生物的溶磷效果及其磷酸酶活性的变化[J].土壤学报,2005 (12) :286-290.
    [30]郝晶,洪坚平,刘冰等.石灰性土壤中高效解磷细菌菌株分离、筛选及组合[J].应用与环境生物学报. 2006(3):404-408.
    [31]张毅民,孙亚凯,吕学斌等.高效溶磷菌株Bmp5筛选及活力和培养条件的研究[J].华南农业大学学报,2006(3):61-65.
    [32]王小妹,袁生,常志州等.一株土生(k.pneumoniae)溶磷能力的初步研究[J].土壤通报, 2006(4): 753-756.
    [33]黄伟,黄欠如,胡锋等.红壤溶磷菌的筛选及溶磷能力的比较[J].生态与农村环境学报.2006(3):37-40
    [34]李凤霞,梁锦绣,周涛.宁夏产枸杞根际溶磷菌分离及溶磷能力分析[J].植物资源与环境学报.2006(3): 29-32
    [35]余贤美,王义,沈奇宾等.解磷细菌PSB3的筛选及拮抗作用的研究[J].微生物学通报. 2008,35(9):1398~1403
    [36]李玉娥,姚拓,荣良燕等.溶磷菌溶磷和分泌IAA特性及对苜蓿生长的影响[J].草地学报.2010(1):84-87.
    [37]梁利宝.解磷细菌对石灰性土壤磷形态的影响[J].山西农业大学学报2008,28(4):454-457.
    [38]孙珊,黄星,范宁杰等.一株溶磷细菌的分离、鉴定及其溶磷特性研究[J].土壤(Soils),2010,42(1):117~122
    [39]辛桢凯,龚文琪,胡纯等.溶磷微生物的选育及除磷研究[J].武汉理工大学学报.2011(1):121-124.
    [40] Costa, Medronho.Phosphate Rock Bioleaching[J]. Biotechnology Letters. 1990.52(2):233-238.
    [41] Delvasto P,Ballester A,Munoz J A, et al. Mobilization of Phosphorus from Iron Ore by the Bacterium Burkholderia Caribensis FeGL03[J]. Minerals Engineering, 2009(22):1-9.
    [42]刘晓芳,黄晓东,张芳.一株溶磷黑曲霉的溶磷特性及溶磷机制初探[J].河南农业科学,2005(6):60-63.
    [43]林启美,王华,赵小蓉等.一些细菌和真菌的解磷能力及其机理初探[J].微生物学报,2001,28(2):26-30.
    [44]王光华,周可琴,金剑.不同碳源对三种溶磷真菌溶解磷矿粉能力的影响[J].生态学杂志,2004,23(2):32-36.
    [45]罗立群,高志,孙洁.难选铁矿石微生物除磷技术[J].金属矿山,2008(8):58-60.
    [46] Kucey R M N. Increased phosphorus uptake by wheat and field beans inoculated with a phosphate-solubilizing Penicillium bilail strain and with Vesicular-Arbuscular mycorrhizal fungi. Appli Environ Micro, 1987 (12): 2699-2703.
    [47] Agnihotri V P. Solubilization of insoluble phosphates by some soil fungi isolated from nursery .Can. J. Microbiol. 1970.16: 877-880.
    [48]范丙全,金继运,葛诚.溶磷草酸青霉菌筛选及其溶磷效果的初步研究[J].中国农业科学,2002,35(5):525-530.
    [49]范丙全,金继运,葛诚等.溶磷真菌促进磷素吸收和作物生长的作用研究[J].植物营养与肥料学报,2004(10):620-624.
    [50]刘立新.生物磷肥的微生物培养及在水稻生产上的试验简报[J].中国农学通报, 2003,(01):122-123.
    [51]周明,徐彦峰,姜丽君等.生物磷肥与无机化肥混施对甜菜产质量的影响[J].中国糖料, 2000,(02):41-43
    [52]戴建军,刘宏宇.生物磷肥对生菜、小白菜生长及N,P,K养分积累的影响[J].东北农业大学学报, 2001,(03):48-52
    [53]肖晓玲.生菜对无机养分吸收特性的研究[J].湖南农业大学学报, 1999,(02) :38-42
    [54] CAKMAKCI R,DONMEZ F,AYDIN A,et al. Growth promotion of plants by plant growth-promoting rhizobacteria under greenhouse and two different field soil conditions[J].Soil Biology&Biochemistry,2007,38:1482-1487.
    [55]秦芳玲,田中民.同时接种解磷细菌与丛枝菌根真菌对低磷土壤红三叶草养分利用的影响[J].西北农林科技大学学报.2009.6(6):151-156.
    [56]易艳梅.细菌溶磷作用及其对磷矿粉重金属释放和小麦盐胁迫的缓解[D].南京农业大学,2007:32-45
    [57] Ketznelson H, Bose B (1959). Metabolic activity and phosphatedissolving capacity of bacterial isolates from wheat roots, rhizosphere and non-rhizosphere soil. Can. J. Microbiol. 5: 79-82.
    [58]张宝贵,李贵桐.土壤生物在土壤磷有效化中的作用[J].土壤学报,1998(35):104-111.
    [59]冯月红,姚拓,龙瑞军.土壤解磷菌研究进展[J].草原与草坪,2003(10):3-7.
    [60] Kumar V. N. Narula. Solubilization of inorganic phosphate and growth emergency of wheat as affected by Azotobacter chrcoccum mutants. Biol. Ferti. Soil. 1999,28:301-305.
    [61] Ponmurugan P, Gopi C.In vitro production of growth regulators and phosphatase activity by phosphate solubilizing bacteria[J]. African Journal of Biotechnology.2006.5(4):348-350
    [62] ARIHARA J,KARASAWA T.Effect of previous crops on arbuscular mycorrhizal formation and growth of succeeding maize[J].Soil Science and Plant Nutrition,2000,46:43-51.
    [63]覃丽金,王真辉,陈秋波.根际解磷微生物研究进展[J].华南热带农业大学学报,2006(12):44-49.
    [64]朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述[J].生态环境,2003(12):102-105.
    [65]李俊,姜昕,李力等.微生物肥料的发展与土壤生物肥力的维持[J].中国土壤与肥料,2006(4):1-5.
    [66] Reyes I,Valery A,Valduz Z.Phosphate-solubilizing microorganisms isolated from rhizospheric and bulk soils of colonizer plants at an abandoned rock phosphate mine[J].Plant and Soil,2006,287:69-75.
    [67]董春,董成刚,赵青峰等.利用拮抗细菌防治烟草青枯病初步研究.广东农业科学.1996(5):28-30.
    [68]金扬秀.甜瓜枯萎病菌拮抗细菌在不同耕作土壤中的分布及其功能研究[D].浙江大学,2003:25-35
    [69]朱茂山,关天舒.发酵条件对生防细菌B301生长及抑菌物质产生的影响[J].吉林农业大学学报,2008(3):25-29.
    [70] Saravanakumara, D., Vijayakumarc, C., Kumarb,N., Samiyappana,R. 2007. PGPR-induced defense responses in the tea plant against blister blight disease. Crop Protection 26:556–565.
    [71] Van Loon, L. C. 2007.Plant responses to plant growth-promoting rhizobacteria. Eur J Plant Pathol 119: 243–254.
    [72] Zhuang X.L., Chen, J., Shim, H., Bai, Z.H. 2007. New advances in plant growth-promoting rhizobacteria for bioremediation. Environment International 33:406–413.
    [73]李久蒂,安千里.联合固氮研究进展[J].植物学通报,1997,14(3):14-21.
    [74]田宏,张德罡,姚拓.土壤联合固氮菌的研究进展[J].草原与草坪,2004,105,(2):3-7.
    [75] Cocking E C. Endophytic colonization of plant roots by nitrogen-fixing bacteria[J].Plant and Soil,2003,252:169-175.
    [76]王庆贺.巴西固氮螺菌Yu62在小麦中的定殖以及对小麦的促生作用[D].西北农林科技大学,2010:4-10.
    [77]张多英,张淑梅,蔡柏岩.玉米内生联合固氮菌的分离与鉴定[J].东北农业大学学报,2010,41(2):6-10.
    [78]田宏,张德罡,姚拓.土壤联合固氮菌的研究进展[J].草原与草坪, 2004,(02):3-6.
    [79]张美琴,马建华,赵月英等.植物联合固氮菌及其促生作用研究进展[J].内蒙古农业科技, 2007,(04):28-32.
    [80]马旅雁,李季伦.巴西螺菌Yu62 draTG基因启动子区域的核苷酸序列分析及其功能分析[J].生物工程学报,1997, 13(4):343-349.
    [81]张晓波,赵艳.结缕草根际联合固氮菌的分离及初步鉴定[J].草原与草坪,2011,31(1):37-40.
    [82] Theis J E,Singleton P W,Bohlool B B.Influence of the size of indigenous rhizobial populations on establishment and symbiotic performance of introduced rhizobia on field grown legumes[J].Applied and Environmental Microbiology,1991,57:29-37.
    [83]陈文峰,陈文新.我国豆科植物根瘤菌资源多样性及应用基础研究[J].生物学通报,2003,38(7):1-4.
    [84]洪坚平,谢英荷,巫东堂.农业微生物资源的开发与利用[M].北京:中国林业出版社,2000:106
    [85]顾素芳,吴晓辉,张红. Nitro苜蓿和鹰嘴紫云英根瘤菌的分离与鉴定[J].四川师范大学学报,1997.20(6):79-83
    [86]许光辉,李振高.微生物生态学[M].南京:东南大学出版社, 1991:41-64
    [87]丁武.影响根瘤菌竞争结瘤的生态学因素分析[J].生态学杂志,1992,11(4):50-54.
    [88]宋福强.微生物生态学[M].北京:化工工业出版社,2008:48-58
    [89]夏觅真,马忠友,曹媛媛等.棉花根际固氮菌、解磷菌及解钾菌的相互作用[J].中国微生态学杂志,2010,22(2):103-105.
    [90]常慧萍,祝凌云,姚丽娟等.小麦根际固氮菌、解磷菌及解钾菌的互作效应[J].中国土壤与肥料,2008,12(4):57-59.
    [91]李玫,何雪香,廖宝文.固氮菌与溶磷菌接种对红海榄生长的影响[J].生态科学,2008,27(4):222-225.
    [92]冯瑞章,姚拓,周万海等.溶磷菌和固氮菌溶解磷矿粉时的互作效应[J].生态学报,2006,26(8):2764-2769.
    [93] Artursson V, Jansson J K. Use of bromodeoxyuridine immunocapture to identify active bacteria associated with arbuscularmycorrhizal hyphae.Applied and EnvironmentalMicrobiology, 2003, 69(10): 6208-6215.
    [94]饶正华,林启美,孙焱鑫.解钾菌与解磷菌及固氮菌的相互作用[J].生态学杂志, 2002,21(2):71-73.
    [95]陈红,李平,王玲霞等.混合培养提高水稻纹枯病生防效果的研究[J].中国农学通报,2001(5):1-5.
    [96]王富民,张彦,吴皓琼等.解磷固氮菌剂的研制及其对小麦的增产效应[J].生物技术,1994,4(4):15-18.
    [97]龙伟文,王平,冯新梅等. PGPR与AMF相互关系的研究进展[J].应用生态学报,2000,11(4):311-314.
    [98]陶光灿,周立刚.细菌组合的固氮、解磷与抗病能力及不同培养条件的影响[D].北京:中国农业大学,2004:45-50
    [99]韩梅,魏冉,李丽娜等.混合培养对菌剂固氮、解磷和解钾能力的影响[J].沈阳农业大学学报,2010,41(5):622-625
    [100] Cook R J,Weller D M. Manage mentof take alien Conseeutiveero Psof wheat orbarley. Innovative APP roughest Plant Disease Control NewYork: Wiley. 1987:41-52
    [101]张学君,刘焕利,潘小玫等.小麦纹枯病生防菌株B3产生抗菌物质条件的研究[J].南京农业大学学报,1995,18(1):26-30.
    [102]王占武,李晓芝,张翠绵等.防病促生功能性微生物的筛选及应用研究[J].河北农业科学,2004,8(2):28-31.
    [103] Hafeez F Y,Malik K A.Manual on Biofertilizer Technology[M].NIBGE,Pakistan,2000:50-51.
    [104] Eric G, Yves D.A. critical examination of the specificity of the salkowski for indolic compounds produced by phytopathogenic bacteria[J].Applied and Environmental Microbiology,1995,793-796.
    [105]郭坚华.抗青枯生防菌拮抗物质的初步研究[J].南京农业大学学报, 1995,18(2):59-62
    [106] WellerDM,LandaBB, Mavrodi OV, Schrocder K L. Role of 2,4-Diacetylphloroglucinol-Producing Fluorescent Pseudomonas spp. In Plant Defense. Plant Biol,2005:235-242
    [107]郭坚华,李瑾.植物细菌性青枯病的生物防治[J].世界农业,1994,31(4):32-38.
    [108]钟传青.解磷微生物溶解磷矿粉和土壤难溶磷的特性及其溶磷方式研究[D].南京农业大学,2004:121-141.
    [109]汤春梅,陈秀蓉,姚拓等.九种根际促生菌最适培养条件初探[J].草原与草坪.2005.3(27):27-30.
    [110]胡子全,赵海泉.一株有机解磷菌的筛选及其最佳生长条件的研究[J].中国给水排水,2007,9(17):28-32.
    [111]刘铁汉,周培瑾.嗜盐微生物.微生物学通报. 1999, 26(3):232-233.
    [112] Miller, K.J. Effects of temperature and sodium chloride concentrations on the phospholipid and fatty acid composition of a halotolerant Planococcus sp.J Bacieriol. 1985,162:263-270.
    [113]赵小蓉,林启美,李保国.溶磷菌对4种难溶性磷酸盐溶解能力的初步研究[J].微生物学报,2002,42(2):236-241.
    [114]张晓波.草地早熟禾根际促生菌(PGPR)特性及根际微生物区系研究[D].北京林业大学,2008:58-66.
    [115] Crouch L J., Smith M.T., VanS.J.,et al. Identification of Auxins in commercial seaweed concentrates[J]. J. Plant Physoil. 1992, 139:590~594.
    [116] Malik K. A., Rasul G., Hassan U. et al. Role of N2 Fixation and Growth Hormones Producing Bacteria in Improving Growth of Wheat and Rice. In: Proceedings of 6th int. Symp. On " Nitrogen Fixation with Non-legumes" [C]. Eds. Hegazi N.A., Fayez M, Monib M. Ismailia, Egypt. 1994:409-422.
    [117] Rasul G., Mirz M.S., Latif F. et al. Identification of Plant Growth Hormones Produced by Bactierial Isolates from Rice, Wheat and Kallar Grass. In: Proxedings 7th int. Symp.on "Nitrogen Fixation with Nonlegumes" [C]. Eds. Malik K.A., Mirza M. S.and Ladha J.K. Kluwer publishers, The Netherlands.1998:25~37.
    [118] Malik K A,Rasul G,Hassan U,et al.Role of N2 Fixation and Growth Hormones Producing Bacteriain Improving Growth of Wheat and Rice.In:Proceedings 6th int.Symp.On“Nitrogen Fixation with Nonlegumes”[C].Eds.Hegazi N A,Fayez M,Monib M.Ismailia,Egypt.1994,409~422.
    [119]张中鸽,彭于发,张玉勋等.多粘芽孢菌B-48菌株抑菌作用[J].生物防治通报, 1994,10(2):85-86
    [120]齐爱勇,魏东盛,刘大群等.番茄灰霉病拮抗细菌的筛选[J].中国农学通报,2006,22(6):311-313.
    [121]安永辉.根际促生菌(PGPR)对紫花苜蓿幼苗生长及生理的影响[D].东北师范大学,2009:48-52.
    [122]程淑琴.两株溶磷菌在两种土壤中的溶磷作用[D].中国农业大学,2003:34-54
    [123]杨慧.溶磷高效菌株筛选鉴定及其溶磷作用研究[D].中国农业科学院.2007:49-50.
    [124] Saini V K, Bhandarib S C, Tarafdara JC. Comparison of crop yield, soil microbial C, N and P, N-fixation, nodulation and mycorrhizal infection in inoculated and non-inoculated sorghum and chickpea crops[J].Field Crops Research,2004,89(1):39-47.
    [125] Andrade SAL, Abreu CA, AbreuM F, et al. Influence of lead additions on arbuscular mycorrhiza and Rhizobium symbioses under soybean plants[J].Applied Soil Ecology,2004,26(2):123-131.
    [126]余波,李志芳.菌根真菌和根瘤菌对四季豆生长影响的效应初报[J].天津农业科学,2003,9(4):21-24.
    [127]郑虎哲,张玉廷,崔春兰等.接种菌根菌和或根瘤菌对紫花苜蓿的生长及N、P的吸收效果研究[J].安徽农业科学.2006,34(3):540-542.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700