用户名: 密码: 验证码:
爆炸作用下钢梁的塑性动力响应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆炸作用下梁板类构件的塑性动力响应是结构抗爆动力响应研究的基础,具有重要的理论意义和工程应用价值。本文以爆炸作用下的独立钢梁为研究对象,对钢梁的塑性应力及变形响应进行了研究,主要内容如下:
     1、采用刚塑性简化模型对简支钢梁进行分析。采用双指数型爆炸超压曲线对简支钢梁进行加载,研究了简支钢梁的最大变形与时间的关系。利用塑性铰的特性,建立了塑性铰的位置与梁的运动规律之间的关系,得到梁在各个时刻的挠度、速度以及转角等参量随时间的变化规律,最终得到简支梁在爆炸载荷作用下的最大残余挠度。
     2、应用移动塑性铰的特性,将梁的运动分成四个阶段。第一个阶段钢梁静止,没有塑性铰产生;第二阶段在钢梁跨中产生一个驻定铰,根据两端刚性段与塑性铰的关系求得梁的运动规律;第三阶段在梁上产生两个移动的塑性铰,根据两端刚性段与中间塑性区段的关系求得梁的运动规律;最后一个阶段两个移动塑性铰合并为一个跨中的驻定铰,运动规律与第二阶段相似,直至梁的运动停止,得到梁的最大残余挠度。
     3、采用LS-DYNA有限元分析程序对工字钢梁在爆炸作用下的动力响应进行了研究。以简支梁和固支梁为研究对象,研究了梁上七个关键点的应力、应变和变形。研究发现,对于简支梁而言,梁的最大变形集中在工字截面的上翼缘以及支座截面下翼缘,最大应力为梁跨中腹板与翼缘的交点处。对于简支梁,下翼缘的应力更大,最大有效塑性应变产生在腹板中心轴线的位置。总而言之,梁的局部变形远大于整体变形。
The plastic dynamic response of beam-slab structure subjected to the explosive loading is the foundation of analysis on the structural antiknock dynamic response, and there is important theoretical significance and engineering application value. This paper takes independent steel beam subjected to the explosive loading as the research object, and does research on the plastic stress and deformation response of the steel beam. Main contents are as follows:
     (1) This paper does research on the dynamic response of simply supported steel beam subjected to the explosive loading using rigid-plastic model. Double exponential explosion overpressure curve is applied on the simply supported steel beam, and the relationship between the maximum deformation of simply supported steel beam and time is analyzed. With the characteristics of the plastic hinge, the relationship between the location of plastic hinge and the motion law of the steel beam is established. Variation rule of deflection, velocity and rotation etc. parameters of the beam over time is obtained, and finally the maximum residual deflection of simply supported steel beam subjected to the explosive loading is obtained.
     (2) With the characteristics of the moving plastic hinge, the motion law of the beam is divided into four stages. In the first stage, the steel beam is stationary, and there is no plastic hinge generating; In the second stage, one stationary hinge generates in mid-span of the steel beam, through the relationship between the rigid section on both sides and intermediate plastic hinge, the motion law of the steel beam is obtained; In the third stage, two moving plastic hinge generate on the beam, through the relationship between the rigid section on both sides and intermediate plastic section, the motion law of the steel beam is obtained; In the last stage, the two moving plastic hinges are combined into one stationary hinge, and the motion law is similar to the situation of the second stage, and until the beam is stationary, the maximum residual deflection is obtained.
     (3) With LS-DYNA finite element analysis software, the dynamic response ofⅠ-type steel beam subjected to the explosive loading is analyzed. With the simply supported beam and clamped beam as the research object, the stress, strain and deformation of seven key points on the beam is analyzed. The research shows that for the simply supported beam the maximum deformation of the beam is concentrated on the edge of the upper flange and the lower flange of the supports, and the maximum stress is located on the intersection point of the mid-span flange with the web. For the simply supported beam, the stress on the upper flange is higher than the lower flange, and the maximum effective plastic strain appears on the medial axis of the mid-span web. In a word, the local deformation is larger than the global deformation.
引文
[1]张婧.接触爆炸载荷作用下舰船板壳结构破坏分析.哈尔滨工程大学硕士学位论文,2007.
    [2]谭海涛.大型舰船甲板在非接触空爆下的塑性动力响应.哈尔滨工程大学博士学位论文,2007.
    [3]黄祥兵,朱锡.非接触空爆对舰艇结构的破坏作用分析.海军工程大学学报,2003,(03):62-64,78.
    [4]盖京波.舰船结构在爆炸冲击载荷作用下的局部破坏研究.哈尔滨工程大学博士学位论文,2005.
    [5]亨利奇.爆炸动力学及其应用.北京:科学出版社,1987.
    [6]Jen C, Tai Y. Deformation behavior of a stiffened panel subjected to underwater shock loading using the non-linear finite element method. Materials and Design,2010,31(1): 325-335.
    [7]Jan S F, Gurbuz O. Dynamic nonlinear finite element analysis of blast resistant concrete buildings in petrochemical facilities.2008 Structures Congress-Structures Congress 2008: Crossing the Borders, April 24,2008-April 26. Vancouver, BC, Canada:American Society of Civil Engineers,2008.
    [8]Duranovic N, Watson A J. Impulsive loading on reinforced concrete slabs-blast loading function. Proceedings of the 3rd International Conference on Structures under Shock and Impact Ⅲ. Madrid, Spain:Publ by Computational Mechanics Publ,1994:63.
    [9]Duranovic N. Impulsive loading on reinforced concrete slabs-modelling considerations. Proceedings of the 1998 5th International Conference on Structures Under Shock and Impact V, June 1,1998-June 1. Thessaloniki, Greece:Computational Mechanics Inc,1998:817-826.
    [10]余同希,W.J.斯壮.塑性结构的动力学模型.北京:北京大学出版社,2002:368.
    [11]Hopkins H R, Prager W. On the dynamics of plastic circular plate. ZAMP,1954,5: 317-330.
    [12]Wang A J and Hopkins, H. G. On the Plastic Deformation of Built-in circular Plates under Implusive Load. J Mech Phys Solids,1954,3:22-37.
    [13]Cox A D, Moorland L W. Dynamic plastic deformation of simply-supported square plate. J. Mech. Phys. Solids,1959(7):229-241.
    [14]Florence A L, Abrahamson G R. A Theory for Critical Loads to Damage a Cylindrical Shell by a Large Underwater Explosion.1966, AD-A042074(DAN4047F)
    [15]Wierzbicki T. Florence A L. A Theoretical and Experimental Investigation of Impulsively Loading Clamped Circular Viscoplastic Plates. Intl. J Solid Struc,1970,6:553-568.
    [16]Niessen E. Structurcal design for enhanced survivability of ship's Hull. Advanced Marine Structures-2, edited by smith C S & Dow R S, Elesvier Applied Science Press,1991, 352-372.
    [17]Nurick G N, Gelman M E, Marshall N S. Tearing of blast loaded plates with clamped boundary conditions. Int. J. Impact Eng.1996,18(7):803-827.
    [18]吴有生,彭兴宁,赵本立.爆炸载荷作用下舰船板架的变形与破损.中国造船,1995,(04):55-61.
    [19]黄骏德,殷沐德,朱锡,等.爆炸载荷下固支方板大变形的塑性动力响应.海军工程学院学报,1985,(04):1-9.
    [20]朱锡,朱凌,殷沐德,等.爆炸载荷下固支方板塑性变形过程的试验研究.海军工程学院学报,1985,(02):61-65.
    [21]唐文勇,陈铁云.加筋板结构的塑性动力响应分析.上海交通大学学报,1996,30(08):73-80.
    [22]刘燕红,朱锡.舰船结构塑性动力响应研究进展.海军工程学院学报,1998,(04):92-100.
    [23]Menkes S B, Opat H J. Broken Beam. Experimental Mechanics,1973,13(11):480-486.
    [24]Nurick G N. Radford A M. Deformation and tearing of clamped circular plates subjected to localised central blast loads. Recent developments in computational and applied mechanics.1997,276-301.
    [25]Neuberger A, Peles S, Ritteld D. Scaling the response of circular plates subjected to large and close-range spherical air-blast loading. International Journal of Impact Engineering, 2007.
    [26]Ramajcyathilagam K. Non-linear transient dynamic response of rectangular plates under shock loading. International Journal of Impact Engineering.2000,24(10):999-1015.
    [27]Rudrapatna N S, Vaziri R, Olson M D. Deformation and failure of blast-loaded stiffened plates. International Journal of Impact Engineering.2000,24:457-474.
    [28]Michael A. Sprague, Thomas L, Geers. A spectral-element/finite-element analysis of a ship like structure subjected to an underwater explosion. Comput. Methods Appl. Mech. Engrg.2006,195:2149-2167.
    [29]张婧,施兴华,王善.水下接触爆炸作用下舰船防护结构中液舱影响仿真分析.天津大学学报,2008,(10):1238-1244.
    [30]朱胜昌,陈庆强.总纵强度耦合作用的船体板架强度计算方法.中国造船,1994,(04):75-87.
    [31]何建,陈冬妮.薄钢板在高速碰撞载荷作用下的数值算法.低温建筑技术,2005,108(06):67-69.
    [32]何煌,曾首义,蒋志刚,等.平头弹垂直侵彻低碳钢靶板的数值模拟分析.中国土木工程学会防护工程分会第五届理事会暨第九次学术年会论文集(上册),2004.
    [33]史春芳,徐赵东.工程结构抗爆技术的研究现状.西安建筑科技大学学报(自然科学版),2007,39(5):616-620.
    [34]张世臣,米双山.爆炸冲击技术研究.兵工自动化,2007,26(08):30-31.
    [35]程开甲.关于爆炸力学目前发展的几点看法.爆炸与冲击,1981,(1):4-5.
    [36]王克强.计算混合炸药爆速的一种新方法.含能材料,2000,8(2):91-94.
    [37]刘明路,赵金城,赖鹏邦,等.爆炸荷载作用下工字钢柱非线性有限元分析.钢结构:2009,24(3):36-40.
    [38]李国强,王开强,孙建运,等.材料模型对钢梁抗爆炸冲击分析的影响.振动测试与诊断,2007,27(3):247-261.
    [39]李晓彬,金咸定,吴卫国,等.空中爆炸下舰船桅杆结构变形及破裂的数值模拟.中国舰船研究,2006,1(5):25-29.
    [40]恽寿榕,赵衡阳.爆炸力学.北京:国防工业出版社,2005:13-29.
    [41]张宝坪,张庆明,黄风雷.爆轰物理学.北京:兵器工业出版社,2001:89-105,157-169.
    [42]唐廷,尤峰,葛涛,等.爆炸荷载简化形式对弹性区应力场的影响.爆破,2007,24(2):7-10.
    [43]北京工业学院八系《爆炸及其作用》编写组.爆炸及其作用.北京:国防工业出版社,1979:100-105.
    [44]盛利.爆炸作用下钢筋混凝土梁动力响应数值模拟.湖南大学硕士学位论文,2007: 47-54.
    [45]A. N. SHERBOURNE, F. LUT. Strain hardening in the moving hinge method. Solids structures,1993,30(24):3475-3489.
    [46]H. S. TURKMEN, Z. MECITOGLU. Dynamic response of a stiffened laminated composite plate subjected to blast load. Jernal of sound and vibration,1999,221(3):371-389.
    [47]J. Lellep, K. Torn. Shear and bending response of a rigid-plastic beam subjected to impulsive loading. International Journal of Impact Engineering,2005,31:1081-1105.
    [48]杨佳通,熊祝华.塑性动力学.北京:清华大学出版社,1984:52-55,124-135.
    [49]罗昆升,蔡文利,张祥伟.爆炸荷载作用下梁的动力响应.全国工程安全与防护学术会议,2008:173-180.
    [50]张衍涛,王德禹.刚塑性梁在任意冲击载荷下的大变形问题.上海:中国海洋平台,2001,16(5):17-21.
    [51]许卫群.冲击载荷作用下结构的动力响应分析.武汉理工大学硕士学位论文,2004.
    [52]吴迪,张世联.空中爆炸下舰船动态响应数值模拟.上海:舰船科学技术,2007,29(6):165-168.
    [53]李海涛,朱锡,张振华.水下爆炸球面冲击波作用下船体梁的刚塑性动向应特性.武汉:工程力学,2010,27(10):202-207.
    [54]孙建运,李国强.爆炸荷载作用下弹性梁的能量解析法分析.四川建筑科学研究,2005,31(5):15-31.
    [55]刘土光,王立庚,唐文勇.舰船结构在爆炸冲击波作用下的塑性动力响应研究.舰船科学技术,1993,3(01):14-21.
    [56]时党勇,李裕春,张胜民.基于ANSYS/LS-DYNA 8.1进行显示动力分析.清华大学出版社,2005:25-95.
    [57]尚晓江,苏建宇,等.ANSYS/LS-DYNA动力分析方法与工程实例.中国水利水电出版社,2006:257-289.
    [58]白金泽.LS-DYNA3D理论基础与实例分析.科学出版社.2005:74-103.
    [59]朱锡.在爆炸载荷作用下固支梁或筒形弯曲板的塑性动态断裂.Journal of naval academy of engineering,1992:14-20.
    [60]赵国忠,陈飚松,亢战,等.梁构件的刚度和稳定性优化设计.计算力学研究与进展,1999:208-213.
    [61]郑宏,顾强.工形截面钢梁板件宽厚比对稳定承载力的影响.长安大学学报,2002, 22(1):28-31,88.
    [62]杨波.工字梁在端弯矩和上翼缘横向荷载共同作用下的整体稳定性.湖南大学硕士学位论文,2010.
    [63]陈友泉.简支工形钢梁弹塑性整体稳定影响因素及合理设计准则初探.华东交通大学学报,1986,2.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700