用户名: 密码: 验证码:
新型乙烯聚合循环反应器的实验与模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
宽/双峰相对分子质量分布聚乙烯(双峰PE)是指相对分子质量分布曲线呈现2个峰值或1个相对较宽峰值的聚乙烯树脂。目前反应器新技术发展迅速,使得双峰聚乙烯的生产得以工业化。现有工艺通常是将二至三个反应器串联,通过改变反应器的气体组成及反应条件,使反应产物具有不同的分子量分布。但反应器串联工艺生产的产品颗粒间或颗粒内部不均匀,且在共混时容易形成凝胶或鱼眼。同时,工艺中第一个反应器的气体无法彻底隔绝,会进入下一个反应器,影响其气体组成,导致产品的双峰分布较窄,无法生产出宽分布的双峰聚乙烯。
     本文首先针对目前生产双峰聚乙烯的反应器技术及工艺存在的问题,设计了三种不同的反应器:分离分凝反应器、多温区内循环反应器和多区循环反应器。结合实际工业生产数据,计算了分离分凝反应器和多温区内循环反应器在一定规模下的尺寸结构及操作条件,并提出了工艺条件的确定原则,使设计方案更具有工业参考价值。
     其次,本文针对所设计的多区循环反应器进行了系统的流体动力学研究,考察了鼓泡流化床床、快速流化床、分布板和旋风分离器等部分的压力分布,并研究了静床高和表观气速对压降、提升段内固体循环量、气阻效果的影响。主要结论如下:反应器内的压降主要以分布板和颗粒的静压头为主,增加气速和器内固体量均导致床层压降的增大;鼓泡流化床的压力梯度较大,而提升段的压力基本不变;淘洗作用的引入,有效地实现颗粒在循环反应器内的自动筛分和物料转移;利用声发射检测手段,结合小波分解和PLS建立的固体颗粒流量回归模型,能准确预测高速流态化下的颗粒流量;通过气相色谱检测气流阻隔前后的CO2浓度发现,在气提段,采用气体阻隔方法,能有效维持不同反应器的反应气氛,确保生产分子量呈双峰/宽峰分布的聚乙烯。
     最后,基于Z-N催化剂下的乙烯配位聚合及其动力学模型,本文从微尺度、中尺度到宏观尺度建立了多区循环反应器内乙烯气相聚合的多颗粒模型。该模型适用于反应器从开车到平稳运行状态中分子量及其分布、产品颗粒粒径和产量的模拟计算。通过对反应器的模拟,得到以下结论:从反应器开车到平稳运行的过渡期,产品的数均聚合度及平均分散指数在反应开始时瞬间提高,在短时间内达到峰值,随后稍微降低并趋于平稳;产量达到平衡耗时较长,在开车后运行4小时后,反应器的总产量才保持在较平稳的状态;单体浓度对产品分子量及其分布影响最大;氢气对高分子量部分的反应影响较为明显,在实际反应中,要严格控制低氢反应区中的氢气浓度;循环比R的增大,会降低聚合物颗粒在反应区内的单次停留时间,导致分子量降低,不利于低氢反应区的反应进行;高活性的催化剂能缩短活聚物所需的单次停留时间,更适用于该反应装置。
Bimodal polyethylene is a kind of engineering thermoplastic with extensively expanded properties. It is now mainly produced by a two-step or multi-step sequential polymerization process, in which the first step is ethylene polymerization and the second step is ethylene-hydrogen copolymerization. The problem with two-step process is that the polymer has low homogeneity and lead to the formation of fish-eyes in the production of films. Meanwhile, if the reacting gas can not be isolated and flows to next reactor, it will influence the polymerization in the next reactor, and the molecular weight distribution of the final product will become lower.
     First of all, in this article, three new reactors are designed and three patents have been applied, which are separating and recondensing reactor, multi-temperature reacting zone reactor and multizone circulating reactor. Calculations have been made to figure out the size and operating parameters of the separating and recondensing reactor and multi-temperature reacting zone reactor. Besides, the principle of selecting technological conditions is established according to the actual production data.
     Secondly, the multizone circulating reactor has been researched deeply. The fluid hydrodynamics of multizone circulating reactor is investigated. The influences of different superficial gas velocity and static bed height on the pressure distribution, circulating solid flow rate and the effect of gas barrier in both the bubbling bed and the riser have been investigated. The main achievements are as follows:(1) Besides the gas distributor, the pressure drop in reactor is mainly affected by the solid particle concentration. (2) Both the increase of superficial gas velocity and the polymer mass quantity in reactor will cause the increase of pressure drop. (3) Pressure drops faster in the bubbling bed than in the riser. (4) Employment of elutriation in this design successfully realizes the solid material transportation among the reacting zones. (5) Based on single-channel AE measurement, a regression model of particle mass flowrate in high-speed fluidization is built up by the use of wavelet packet transformation and partial least square(PLS) method. Results show that PLS method based on multi-scale analysis of A E signals is feasible for the detection of particle mass flowrate in high-speed fluidization. (6) Gas chromatography is used to detect the concentration of tracer gas CO2 both in the location of before and after the feeding position of barrier gas. Results show that the adoption of barrier gas can effectively create two different reacting conditions, making it possible to produce bimodal polyethylene.
     Last but not the least, based on the kinetic mechanism of polyethylene polymerization and the multigrain model, a mathematic model of gas phase polyethylene polymerization in multizone circulating reactor is presented. This model can be used in both the dynamic state and the steady state of the reactor. It can predict the important parameters of product, such as molecular weight and molecular weight distribution, particle size distribution and the reactor production, and so on. After the simulation of the reactor, there are some conclusions as follows:(1) The molecular weight, exponent index and particle size can reach their balance soon, but the production of the reactor causes a long time, which is 4 hours in the simulation. (2) Monomer concentration has the greatest impact on the molecular weight and the molecular weight distribution of product. (3) Concentration of hydrogen takes an obvious effect on the low hydrogen reacting zone, which means it's important to control the hydrogen concentration in this zone strictly. (4) The increase of recycle rate R, will lower the product molecular weight, which goes against of the production of bimodal PE. (5) Catalysts with high activation are more suitable for this reactor.
引文
[1]付吉江,闵文武.双峰聚乙烯的生产技术及工艺.石化技术与应用.2000,18(3):112-116.
    [2]Menally J P. Catalyst composition and process for preparing polyolefin. US:58145743,1998.
    [3]汤晓东.气相法PE催化剂技术发展及研究进展.合成树脂及塑料,1997,14(1):47-50.
    [4]陆玲芳.北星双峰聚乙烯工艺及产品.金必油化纤,2004,23(3):34-36.
    [5]潘建兴,杨敬一,徐心茹.聚乙烯技术新进展.现代化工,2005,25(8):20-22.
    [6]李玉芳.世界聚乙烯生产工艺的开发.国外塑料,2002,16(10):20-23.
    [7]Timothy F, McKenna, Joao BP, et al. Single particle modeling for olefin polymerization on supported catalysts:A review and proposals for future development. Chem. Eng. Sci,2001, 3(56):3931-3949.
    [8]Nagel E J, Kirilov V A, Ray W H. Prediction of molecular weight distributions for high-dense polyolefin. Ind. Eng. Prod. Res. Dev.,1980,19(6):372-386.
    [9]Schmeal W R, Street J R. Polymerization in expanding catalyst particles. AIChE. J,1971, 17(5),1189-1197.
    [10]Schmeal W R, Street J R. Polymerization catalyst particles:Calculation of molecular weight distribution. Poly. Sci. Ed,1972,10(3),2173-2187.
    [11]Galvan R, Tirrell M. Moleeular weight distribution predictions for heterogeneous Ziegler-Natta polymerization using a two-site model. Chem. Eng. Sci,1986,41(6):2385-2398.
    [12]Floyd S, Helskanen T, Ray W H. Solid catalyzed olefin polymerization. Chem. Eng. Sci, 1995,3(3):262-284.
    [13]Soare J B P, Hamielee A E.General dynamic mathematical modeling of heterogeneous Ziegler-Natta and Metallocene Catalyzed Copolymerization with multiple site types and mass and heat transfer resistances. Reac. Eng,1995,3(3):261-282.
    [14]Zacca J J, Ray W H. Modeling of the liquid phase polymerization of olefins in loop reactor. Chem. Eng. Sci.,1993,48(2222):3743-3765.
    [15]范顺杰,徐用慰.本体法聚丙烯CSTR建模研究.清华大学学报,2004,40(1):112-115.
    [16]Sarkar P, Gupta S. Simulation of propylene polymerization:an efficient algorithm. Polymer, 1992,32(3):2087-2101.
    [17]Sarkar P, Gupta S K. Dynamic simulation of propylene polymerizations in continuous flow stirred tank reactors. Poly. Eng. Sci,1993,33(8):54-88.
    [18]Sau M, Gupta S K. Modeling of a semi batch polypropylene slurry reactor. Chem. Eng. Sci, 1993,34(21):4417-4436.
    [19]Neto A G M, Pinto J C. Steady-state modeling of slurry and bulk polypropylene polynlerizatlons. Chem. Eng. Sci.,2001,56(7):4043-4057.
    [20]罗正鸿,曹志凯,朱乃靖.稳态操作下的万吨级聚丙烯环管反应器模型的建立.厦门大学学报,2005,44(3):395-398.
    [21]Dube M A, Soares J B P, Penlisis A. Mathematical modeling of multicomponent chain-growth polymerizations in batch semi batch and continuous reactors. Ind. Eng. Chem. Res,1997,36(4):966-1015.
    [22]Brandolin A, Lacunza M H, Ugrin P E. High pressure polymerization of ethylene:An improved mathematical model for industry tubular reactors. Poly. Reac. Eng.,1996,4(4): 193-197.
    [23]Reginato A S, Zacca J.J, Secchi A R. Modeling and simulation of propylene polymerization in nonideal loop reactor. AIChE,2003,49(10):2642-2654.
    [24]Choi K Y, Ray W H. The dynamic behavior of fluidized bed reactors for solid catalyst gas phase olefin polymerization. Chem.Eng.Sci,1985,40(8):2261-2285.
    [25]McAykey K B, Mcgergor J F. Harry T J. A comparison of two phase and well-mixed models for fluidized bed polyethylene reactors. Chem. Eng. Sci,1994,49(11):2035-2063.
    [26]Hatzantonis H, Yiannoulakis H, YiagoPolos A. Recent developments in modeling gas phase catalyzed olefin polymerization fluidized-bed reactors:the effect of bubble size variation on the reactor performance. Chem.Eng.Sci,2000,55(9):3237-3254.
    [27]Green A T, Lockman C S, Steele R K. Acoustic verification of structural integrity of polymer. Modern Plastics, MOPLAY.1964,41(11):137-139,178-180.
    [28]Boyd J, Varley J. The uses of passive measurement of acoustic emissions from chemical engineering processes. Chemical Engineering Science,2000.56(7):1749-1764.
    [29]Cody G D, Goldfarb D J, Storch Jr G V, Norris A N. Particle granular temperature in gas fluidized beds. Powder Technology.1996,87:211-232.
    [30]Cody G D, Bellows R J, Goldfarb D J, Wolf H A, Storch G V. A novel non-intrusive probe of particle motion and gas generation in the feed injection zone of the feed riser of a fluidized bed catalytic cracking unit. Powder Technology.2000,110(1):128-142.
    [31]Huang J, Sivert O, De Silva S, Kim H E. Non-invasive monitoring of powder breakage during pneumatic transportation using acoustic chemo metrics. Powder Technology.2003, 129(1):130-138.
    [32]Saba M. Some application of acoustic emission in particle science and technology. Particulate Science and Technology.2003,21:293-301.
    [33]Tallon S J, Davies C E. The effect of pipeline location on acoustic measurement of gas-solid pipeline flow. Flow Measurement and Instrumentation.2000,11(3):165-169.
    [34]Tallon S J, Davies C E. Velocity measurements in dense down flow of bulk solids using a non-restrictive acoustic method. Flow Measurement and Instrumentation.2000,11(3): 171-176.
    [35]Zukowski W. Acoustic effects during the combustion of gaseous fuels in a bubbling fluidized bed. Combustion and Flame.1999,117(3):629-635.
    [36]刘勇,杨宏旻,马卫民,顾蟠,徐益谦.燃煤流化床声发射频谱域特征分析.燃科学与技术 1999,5(3):262-269.
    [37]刘勇,杨宏旻,马卫民,顾蟠,徐益谦.燃煤流化床声发射特性实验研究.燃科学与技术.1999,5(1):32-38.
    [38]Wang J D, Yang Y R, Ge P F. Measurement of the fluidized velocity in gas-solid fluidized beds based on AE signal analysis by wavelet packet transform. Science in China Series B: Chemistry.2007,50(2):284-289.
    [39]阳永荣,候琳熙,王靖岱,胡晓萍.声波的多尺度分解与颗粒粒径分布的实验研究.自然科学进展,2005,15(3):380-384.
    [40]赵贵兵,阳永荣,候琳熙.流化床中的声发射机理及在故障诊断中的应用.化工学报2001,52(11):941-943.
    [41]黄正梁,王靖岱,阳永荣.声波的多尺度分解与搅拌釜中浆液浓度的测量.化工学按.2006,57(9):2062-2067.
    [42]Cao Y J, Wang J D, He Y J, Liu W, Yang Y R. Agglomeration detection based on attractor comparison in horizontal stirred bed reactors by acoustic emission sensors. AIChE J,2009, 55(12):3099-3108.
    [43]Green A. T., Lockman C. S., Steele R. K. Acoustic Verification of Structural Integrity of Polaris Chambers. Modern Plastics, MOPLAY.1964,41(11):137-139,178-180.
    [44]Ravindra H V, Srinivasa Y G, Krishnamurthy R. Acoustic emission for tool condition monitoring in metal cutting. Wear,1997,212(1):78-84.
    [45]Vaidya U K, Raju P K。 Identification of Failure Modes of Carbon-Carbon Composites at Various Processing Stages Using the Acoustic Emission Technique. Journal of Vibration and Acoustics,1996,118(3):446-454.
    [46]耿荣生.声发射信号处理与分析技术.无损检测.2002,24(1):23-28.
    [47]Ravindra H V, Srinivasa Y G, Krishnamurthy R. Acoustic emission for tool condition monitoring in metal cutting. Wear,1997,212(1):78-84.
    [48]Vaidya U K, Raju P K. Identification of Failure Modes of Carbon-Carbon Composites at Various Processing Stages Using the Acoustic Emission Technique. Journal of Vibration and Acoustics.1996,118(3):446-454.
    [49]张凤林,韩维.机体结构AE信号的统计分析研究.航空学报,2001,22(3):202-206.
    [50]谭云亮,石永奎.坚硬顶板运动过程中声发射分析特征.东北大学学报.1994,15(增刊):332-335.
    [51]李家林,董云朝,马羽宽.声发射源特性的神经网络模式识别研究.无损检测,2001,23(6):231-233.
    [52]许禄.化学计量学方法,北京,科学出版社,1995.
    [53]王惠文.偏最小二乘回归方法及应用,北京,国防科技出版社,1996.
    [54]陈杰勋,王靖岱,阳永荣.基于拉曼光谱的高密度聚乙烯质量检测.化工学报,2009,60(9):2365-2371.
    [55]纪洪广,张志勇.无损检测中常用声发射参数的分析与评价.无损检测,2001,23(7):289-291.
    [56]项鲁丁,基于多变量统计过程控制方法—PCA/PLS在工业控制中的应用.上海,上海交通大学,2003.
    [57]Kaisa Naelapaa, Peep Veski, Joang. Pedersen et al. Acoustic monitoring of a fluidized bed coating process. International Journal of Pharmaceutics,2007,332:90-97.
    [58]Terchi A., Au Y. H. J. Acoustic Emission Signal Processing. Measurement and Control.2001, 4(8):240-244.
    [59]陈玉华,刘时风,耿荣生,沈功田.声发射信号的谱分析和相关分析.无损检测.2002.24(9):395-399.
    [60]Hou R., Hunt A., Williams R. A. Acoustic monitoring of hydro cyclone performance. Minerals Engineering,1998,11(11):1047-1059.
    [61]Coulthard J. Cross-correlation flow measurement-a history and the state of the art. Measurement and Control,1983,16:214-218.
    [62]Zeng H, Zhou Z D, Chen Y P. Wavelet Analysis of Acoustic Emission Signals and Quality Control in Laser Welding. Journal of Laser Application,2001,13(4):167-173.
    [63]Yamada M. Orthonormal wavelet expansion and its application to turbulence. Prog. Theor. Phys.,1990,83(5):819-824.
    [64]李辉,宋智勇,孙丰瑞.基于小波包-包络分析的故障特征提取方法.振动测试与诊断,2003,23(4):291-294.
    [65]冯哲圣,顾德恩,杨邦朝.基于表波包分解的电化学噪声能量谱分析.电子测量与仪器学报,2003,17(4):53-56.
    [66]Stuart Daw C., William F. Lawkins, Darryl J. Downing, Ned E., Clapp Jr.Chaotic characteristics of a complex gas-solids flow. Phys. Rev. A,1990,41(2):1179-1181.
    [67]陈庆,石海涛,殷大斌,黄正梁,阳永荣.基于复杂性分析的流化床中流型的声发射检测.化工自动化及仪表.2009,36(3):67-69.
    [68]Van der Schaaf J, van Ommen J R, Takens F, Schouten J C. Similarity between chaos analysis and frequency analysis of pressure fluctuations in fluidized beds. Chemical Engineering Science,2004,59(8):1829-1840.
    [69]马丽萍,石炎福,黄卫星,余华瑞,祝京旭.循环流化床压力脉动信号的间歇性分析.化工学报,2003,54(5):619-624.
    [70]Yijun He, Jingdai Wang, Yijia Cao, Yongrong Yang. Resolution of Structure Characteristics of AE Signals in Multiphase Flow System-From Data to Information. AIChE J,2009, 55(10):548-563.
    [71]Schouten J. C., van den Bleek C. M. Monitoring the quality of fluidization using the short-term predictability of pressure fluctuations. AIChE Journal,1998,44(1):48-60.
    [72]赵天池.传感器和探测器的物理原理和应用.北京:科学出版社,2008.
    [73]明瑞森.声强技术.杭州:浙江大学出版社.1995.
    [74]Ravindra H V. Srinivasa Y G, Krishnamurthy R. Acoustic emission for tool condition monitoring in metal cutting. Wear,1997,212(1):78-84.
    [75]Yijia Cao, Jingdai Wang, Yijun He, Wei Liu, Yongrong Yang. Agglomeration detection based on attractor comparison in horizontal stirred bed reactors by acoustic emission sensors. AIChE Journal 2009,55(10):236-240.
    [76]吴文清,骆广海,阳永荣等.一种烯烃在多温度区域聚合的流化床反应器及其工艺.CN:200910009747.2,2009.
    [77]骆广海,吴文清,阳永荣等.一种烯烃聚合的多区循环反应装置和反应方法.CN:200910222301.8,2009.
    [78]骆广海,吴文清,阳永荣等.一种烯烃聚合反应的装置和方法.CN 201010160512.6.2010.
    [79]Geldart D, Kelsey J R. The influence of the gas distributor on bed expansion, bubble size and bubble frequency in fluidized bed. I Chem E. Symp. Ser.1968,30:114-125.
    [80]陈甘棠,王樟茂.多相流反应工程.杭州:浙江大学出版社,1996.
    [81]Kim H E, Maths H. Acoustic chemometrics from noise to information. Chemometrics and Intelligent Laboratory Systems,1998,44(2):61-76.
    [82]Maths H, Kim H E. New developments in acoustic chemometric prediction of particle size distribution:the problem is the solution. Journal of Chemometrics,2000,14(7):463-481.
    [83]Seeber R, Ulrici A. Transform methods in the synthesis and elaboration of signals [C]/IV Colloquium Chimiometricum Mediterraneum. Burgos:Elsevier Informacion Professional, 1999.18(1):11-27.
    [84]任聪静,吴雪妹,王靖岱.气固流化床发射信号的多尺度解析.浙江大学学报(工学版),2008,42(7):1255-261.
    [85]陈德钊.多元数据处理.北京:化学工业出版社,1998.
    [86]王惠文.偏最小二乘回归方法及应用.北京:国防科技出版社,1996.
    [87]Finlayson B A. Nonlinear analysis in chemical engineering. M1. New York, McGraw-Hill, 1980.
    [88]张建候,许锡恩.化工过程分析与计算机模拟.北京:化学工业出版社,1989.
    [89]马正飞,殷头翔.数学计算方法与软件的工程应用.北京:化学工业出版社,1989.
    [90]Han, G C, Ray W H. Polymerization of olefins through heterogeneous catalysis: experimental study and model interpretation of some aspects of olefin polymerization over a TiCl4/MgCl2 catalyst. J. Appl. Polym. Sci,1997,65(6):1037-1052.
    [91]冯伯华.化学工程手册.北京:化学工业出版社,1989.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700