用户名: 密码: 验证码:
高温热处理木材动态粘弹性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了深入了解高温热处理木材在动态交变载荷作用下的力学性能及松弛转变,探讨材性、含水率、热处理工艺、温度等对木材动态粘弹性的影响规律和木材高温热处理机理,为高温热处理木材的深加工及设计应用提供理论参考,本文主要采用未处理马尾松、190℃热处理马尾松和210℃热处理马尾松作为试材,利用动态热机械分析仪研究了气干密度和抗弯弹性模量与动态粘弹性的相关性,测试了不同含水率试样的动态力学性能,比较了不同工艺下木材动态力学性能的差异,在不同频率下进行温度谱扫描,并运用X射线衍射仪、傅立叶红外光谱仪、TG/DSC综合热分析仪等辅助设备,研究了木材高温热处理机理。研究结果表明:
     (1)未处理材、190℃热处理材和210℃热处理材的储能模量(E')、损耗模量(E")均与气干密度、抗弯弹性模量存在显著的正相关关系,而损耗因子(tanδ)无明显相关性。
     (2)随着含水率的增大,三种试材的E'总体呈减小趋势,E"和tanδ均呈增大趋势,但三种试材变化幅度有差异;热处理降低了木材的吸湿性,平衡含水率随热处理强度的增大而减小。
     (3)在绝干和气干状态下,与未处理材相比,热处理材E'均增大,E"和tanδ均减小,且随热处理强度的增大,E'增幅越大,E"和tanδ降低越多;热处理本身使木材动态粘弹性发生变化,不同工艺间含水率差异也是造成木材性能差异的原因。
     (4)E'随着温度的升高而逐渐减小,未处理材对温度的敏感性更大;未处理材E"温度谱和tanδ温度谱均出现两个松弛峰,热处理使木材支化程度下降导致热处理材只有一个α松弛峰;随热处理强度的增大,α松弛峰向高温方向移动;随频率的增大,E'增大,E"和tanδ减小。
     (5)木材化学、物理结构的改变是造成动态粘弹性变化的原因。190℃和210℃热处理材结晶度大于未处理材,热处理后羟基和羰基数目减少,吸湿性降低,220℃以下,降解速度缓慢,在220℃以上木材发生明显的降解,构成木材E'下降的重要因素,热处理不宜超过220℃。在271℃附近,马尾松发生玻璃化转变。
In order to look into the dynamic mechanical properties and relaxation changes of heat-treated wood under cyclic loading,to investigate the effect of wood properties, moisture content, heat treatment process and temperature on dynamic viscoelasticity and mechanism of heat treatment,and to provide a theoretical reference for applications and deep processing of heat-treated wood ,the dynamic viscoelasticity of untreated pine (Pinus massoniana), heat-treated pine at 190℃and 210℃were studied by dynamic mechanical thermal analyzer Correlations between air-dried density and dynamic viscoelasticity were investigated .Correlations between modulus of elasticity and dynamic viscoelasticity were studied.Dynamic properties of samples with different moisture content were tested.Dynamic mechanical properties of wood under different heat-treatment process were compared.The temperature spectrum were scanned at different frequency.The mechanism of heat-treatment were studied by X-ray diffractometer, FTIR and TG/DSC comprehensive analysis meter.The results were listed as follows:
     (1)Both of storage modulus and loss modulus of untreated pine, heat-treated pine at 190℃and heat-treated pine at 210℃had remarkble correlations with modulus of elasticity(MOE) and air-dried density(ρ)respectively.But the loss factor was incorrelate with MOE andρ.
     (2)As the moisture content increases, E' of the three test materials showed decreasing trend overall, E"and tanδshowed increasing trend,but the range of changes of three test materials were different.The Hygroscopic were decreased by heat-treatment. Equilibrium moisture content was decreased with the heat treatment intensity increasing.
     (3)At air dried and oven-dried states,comparing with untreated wood, E' of heat-treated wood has increased,E" and tanδhave decreased.The intensitier of heat treatment,the greater E' has increased andt he more E" and tanδhave decreased. Heat-treatment has changed dynamic viscoelasticity of wood.Differences of moisture content between processes have also contributed to the change of dynamic viscoelasticity.
     (4)E' has gradually decreased with the temperature increasing and untreated wood was more sensitive to the temperature.There are two relaxation peaks in temperature spectrums of E" and tanδof untreated wood. Heat-treatment has decreased the degree of branching of wood, which led to only oneαrelaxation peak in temperature spectrum of heat-treated wood. With the increasing of heat treatment intensity,αrelaxation peak shifted to high temperature. E' has increased with frequencies increasing but E"and tanδhave decreased.
     (5)The changes of wood chemical structural and physics structural have caused dynamic viscoelastic change.The crystallinity of heat-treated woods were greater than that of untreated wood.The Hydroxyl and Carbonyl have decreased afer wood was heat-treated., the degradation rate of wood is slow when the temperature was below 220℃.When the temperature was above 220℃,there was a apparent degradation of wood. Rapid degradation of wood played an important role in the decline of E'. The temperature should not exceed 220℃for wood Heat treatment. At 271℃, the glass transition of pine has happened.
引文
[1]顾炼百,丁涛.高温热处理木材的生产和应用[J].中国人造板. 2008, 9: 14–18.
    [2] JAMSA S, VIITANIEMI P. Heat Treatment of Wood–Better Durability without Chemicals[C]. Proceedings of Special Seminar. Antibes, France. 2001: 19–23.
    [3] VERNOIS M. Heat Treatment of Wood in France–State of the Art[C]. Proceedings of Special Seminar held. Antibes, France. 2001: 37–44.
    [4] Militz H, Tjeerdsma B. Heat Treatment of Wood by the PLATO–Process[C]. Proceedings of Special Seminar. Antibes, France. 2001: 25–34.
    [5] Finnish Thermowood Association. Thermo Wood Hand book[M]. FIN–OO171. Helsinki, Finland: 2003.
    [6] Rapp A.O, Sailer M. Oil Heat Treatment of Wood in Germany–State of the Art[C]. Proceedings of Special Seminar. Antibes,France. 2001: 45–60.
    [7]李延军,唐荣强,鲍滨福,孙会.高温热处理杉木力学性能与尺寸稳定性研究[J].北京林业大学学报, 2010, 32(04): 232–236.
    [8]蔡家斌,李涛,张柏林,徐伟.高温热处理对樟子松板材物理力学性能影响的研究[J].林产工业, 2009, 36(06): 31–34.
    [9] Y.Kubojima, T.Okano, M.Ohta. Bending strength and toughness of heat–treated wood[J]. Wood Sci, 2000, 46: 8–15
    [10] B. Sundqvist. Colour changes and acid formation in wood during heating[D]. Doctoral thesis: Divisions of Wood Material Science, Lulea University of Technology–Skeria, Sweden, 2004.
    [11] C. A. Lenth, F.A.Kamke. Equilibrium Moisture Content of Wood in High–temperature Pressurized Environments[J]. Wood and Fiber Science, 2001, 33(1): 104–118.
    [12]蔡家斌,李涛.高温热处理对杨木压缩板材物理力学性能的影响[J].林业科技开发, 2009, 23(03): 104–106
    [13] M. Borrega, P. Karenlampi. Mechanical behavior of heattreated spruce(Picea abies)wood at constant moisture content and ambient humidity[J]. Holz Roh–Werkst, 2008, 66: 63–69.
    [14]Jun Li Shi, D.Kocaefe, J.Zhang. Mechanical behaviour of Quebec wood species heat–treated using Thermo Wood process[J]. Holz Roh Werkst, 2007, 65: 255–259.
    [15]周建斌,邓丛静,蒋身学等.炭化木物理力学性能的研究[J].林产工业, 2008, 35(6): 28–31.
    [16]谢桂军,刘磊,廖红霞.马尾松木材热处理研究[J].广东林业科技, 2007, 23(4): 6–10.
    [17]周建斌,邓丛静,张齐生.杉木炭化前后化学成分变化的研究[J].林产化学与工业, 2008, 28(03): 105–107.
    [18]邓邵平,江茂生,陈孝云,谢拥群.杉木间伐材高温热处理后化学成分的变化[J].林业科学, 2009, 45(11) : 121–126.
    [19] N. Ayadi, F. Lejeune, F. Charrier, B. Charrier, A. Merlin. Color stability of heat–treated wood during artificial weathering[J]. Holzals Roh–und Werkstoff, 2003, 61: 221–226.
    [20] D. P. Kamdem, A. Pizzi, M. C. Triboulot. Heat–treated Timber:Potentially Toxic Byproducts Presence and Extent of Wood Cell Wall Degration[J]. Holz als Roh–und Werkstoff, 2000, 58: 253–257.
    [21] B. F. Tjeerdsma, M. Boonstra, A. Pizzi, P. Tekely, H. Militz. Characterisation of thermally modified wood: molecular reasons for wood performance improvement[J]. Holz als Roh–und Werkstoff, 1998, 56: 149–153.
    [22] B. F. Tjeerdsma, H. Militz. Chemical changes in hydrothermal treated wood: FTIR analysis of combined hydrothermal and dry heat–treated wood.[J]. Holz als Roh–und Werkstoff, 2005, 63: 102–111.
    [23] M. Akgul, E. G. kaya, S. Korkut. Crystalline structure of heat–treated Scots pine (Pinus sylvestris L.)and Uludag fir (Abies nordmanniana (Stev.) subsp. Bornmuelleriana (Mattf.)) wood[J]. Wood Sci Technol, 2007, 41: 281–289.
    [24] H. Wikberg, S. L. Maunu. Characterisation of thermally modified hard–and softwoods by 13C CPMAS NMR[J]. Carbohydrate Polymers, 2004, 58: 461–466.
    [25] D. P. Kamdem, A. Pizzi, A. Jermannaud. Durability of Heat–treated Wood[J]. Holz als Roh–und Werkstoff, 2002, 60: 1–6.
    [26]顾炼百,丁涛,吕斌,朱昆.压力蒸汽热处理木材生物耐久性的研究[J].林产工业, 2010, 37(05): 6–9.
    [27]朱昆,程康华,李惠明,陈人望,邵雁萍.热处理改性木材的性能分析Ⅲ——热处理材的防霉性能[J].木材工业, 2010, 24(01): 42–44.
    [28]程大莉,蒋身学,张齐生.杉木热处理材的耐腐性研究[J].木材工业, 2008, 22(06): 11–13
    [29]马星霞,蒋明亮,吕慧梅,虞华强,吴玉章.樟子松热处理材耐腐性的评价[J].木材工业, 2009, 23(05): 45–47.
    [30]窦金龙,等.干、湿木材的动态力学性能及破坏机制研究[J].固体力学学报, 2008, 29(4): 348–353.
    [31]符韵林,等.二氧化硅/木材复合材料的动态黏弹性[J].林业科学, 2009, 45(3): 102–104.
    [32]蒋佳荔.木材动态粘弹性的温度、时间与频率响应机理研究[D].北京:中国林业科学研究院, 2009.
    [33]杜春贵,等.以杉木积成材为芯板的新型细木工板的动态热机械分析[J].林业科技, 2008, 33(6): 45–48.
    [34] Garcia R., M. C. Triboulot, A. Merlin, X. Deglise. Variation of the viscoelastic properties of wood as a surface finishes substrate[J]. Wood Science and Technology, 2000, 34(2): 99–107.
    [35] Ying Cheng Hu, TetsuyaNakao, TakahisaNakai, JiyouGu. Study on Dynamic ProPerties ofwood–Based ComPosite[C]. Abstracts of 53rd annual Meeting of the JaPan wood researeh society, Fukuoka, 2003, 3: 75.
    [36] Sugiyama M. and M. Norimato. Temperature dependence of dynamic viscoelasticities of chemically treated wood[J]. Mokuzai Gakkaishi, 1996, 42(11): 1049–1056.
    [37] Nakano T., Honma S., Matsumoto A. Physical properties of chemically–modified wood containing metalⅠ. Effects of metals on dynamic mechanical properties of half–esterified wood[J]. Mokuzai Gakkaishi, 1990, 36(12): 1063–1068.
    [38]王兵.粘弹性材料的动态力学测试分析技术研究进展[J].材料开发与应用, 2009, 24(3): 77–79.
    [39]史伯章,阮锡根,吴达期.几种测量木材弹性模量及内耗的方法比较[J],南京林业大学学报, 1989, 13(4): 21–28.
    [40] D. W. Haines, J. M. Leban, C. Herbe, Determination of Young’s modulus for spruce, fir and isotropic materials by the resonance flexure method with comparisons to static flexure and other dynamic methods[J]. Wood Science and Technology, 1996, 30: 253–263.
    [41]蒋佳荔,吕建雄,赵广杰.化学处理木材的动态粘弹性研究[J].北京林业大学学报, 2006, 28(1): 92–96.
    [42] Mano F. The viscoelastic properties of cork[J]. Journal of Material Science, 2002, 37: 257–263.
    [43] Backman A. C and K. A. H. Lindberg. Difference in wood material responses for radial and tangential direction as measured by dynamic mechanical thermal analysis[J]. Journal of Material Science, 2001, 36: 3777–3783.
    [44] Furuta Y., M. Makinaga, H. Yano and H. Kajita. Thermal–softening properties of water swollen wood II. Anisotropic characteristics of thermal softening properties[J]. Mokuzai Gakkaishi, 1997, 43(1): 16–23.
    [45] Yucheng Peng, Sheldon Q, Shi, Moon G Kim. Effect of temperature on the dynamic mechanical properties of resin film and wood[J]. Forest Products Journal, 2008, 58(12): 68–74.
    [46] Schaffer E. L. Effect of pyrolytic temperatures on the longitudinal strength of dry Douglas–fir[J]. Journal of Testing and Evaluation, 1973, 1: 319–329.
    [47] Faix, O., E.Jakab, F. Till and T. Szekely. Study on low mass thermal degradation products of milled wood lignin by thermogravimetry–mass–spectrometry[J]. Wood Science and Technology, 1988, 22: 323–334.
    [48] Irvine. The glass transition of lignin and hemicellulose and their measurement by differential thermal analysis[J]. Journal, 1984: 118–121.
    [49] Back E. L. and N. L. Salmen. Glass transition of wood components hold implications for molding and pulping processds[J].Tappi, 1982, 65: 107–110.
    [50] Bardet S. and J. Girl. Characterising glassy transitions of Bocoa Prouacensis in wet conditions[C].Proceedings of the First International Conference of the European Society for Wood Mechanics, Lousanne, Suitzerland, 2001.
    [51] Obataya E., Yokoyama M., Norimoto M. Mechanical and dielectric relaxations of wood in a low temperature range I. Relaxations due to methylol groups and adsorbed water[J]. Mokuzai Cakkaishi, 1996, 42(3): 243–249.
    [52] Obataya E., Ono T., Norimoto M. Vibrational properties of wood along the grain[J]. Journal of MaterialScience, 2000, 35(12): 2993–3001.
    [53] Obataya E., Furuta Y., Gril J. Dynamic viscoelastic properties of wood acetylated with acetic anhydride solution of glucose pentaacetate[J]. Journal of Wood Science, 2003, 49(2): 152–157.
    [54] James WL Internal friction and speed of sound in Douglas–fir[J]. Forest Prod J, 1961, 11(9): 383–390.
    [55]程瑞香,张齐生.密闭高温软化处理竹材的玻璃化转变温度[J].林业科学, 006, 42(7): 87–89.
    [56]黄晓东,等.不同竹龄毛竹增强相的动态热机械研究[J].世界竹藤通讯, 2008, 6(4): 10–12.
    [57]沈隽.云杉属木材构造特征与振动特性参数关系的研究[D].哈尔滨:东北林业大学, 2001.
    [58] Yoshitaka Kubojima, Takeshi Okano, Masamitsu Ohta, Vibrational properties of sitka spruce heat~treated in nitrogen gas[J]. Wood Sci., 1998 44: 73–77.
    [59]李延军,孙会,等.国内外木材热处理技术研究进展及展望[J].浙江林业科技, 2008, 28(1): 21–23.
    [60]谢延军.欧洲云杉热处理研究[D].哈尔滨:东北林业大学, 2001.
    [61]李延军,唐荣强.高温热处理木材工艺的初步研究[J].林产工业, 2008, 35(2): 16–18.
    [62]李涛.水曲柳实木地板高温热处理研究—材性变化及产业化分析[D].南京:南京林业大学, 2007.
    [63] Giebeler E, Bluhm B, Alscher A, et al. Process for the modification of wood[J]. Patent US43770401 Reutgerswerke AG, USA, 1983.
    [64] Navi P, Girardet F. Effects of thermo–hydro–mechanical treatment on the structure and properties of wood[J]. Holzforschung, 2000, (54): 287–293.
    [65] Kamden D P, Pizzi A, Jermannaud A. Durability of heat–treated wood[J]. Holz als Roh–und Werkstoff, 2002, (60): 1–6.
    [66] Sivonen H, Maunu S L, Sundholm F, et al. Magnetic resonance studies of thermally modified wood[J]. Holzforschung, 2002, (56): 648–654.
    [67] Weiland J J,Guyonnet R. Study of chemical modifications and fungi degradation of thermally modified wood using DRIFT spectroscopy[J]. Holzforschung, 2003, (61): 216–220.
    [68] M. Akgul, E. G. skaya, S. Korkut. Crystalline structure of heat–treated Scotspine (Pinus sylvestris L.) and Uludagfir (Abiesnord manniana (Stev.) subsp. bornmuelleriana(Mattf.)) wood[J]. Wood Sci Technol, 2007, 41: 281–289.
    [69]H.Wikberg, S. L. Maunu. Characterisation of thermally modified hard–and softwoods by 13C CPMAS NMR[J]. Carbohydrate Polymers, 2004, 58:461–466.
    [70] Tjeerdsma, B.F., M. Boonstra, A. Pizzi, P. Tekely, and H. Militz. 1998. Characterisation of thermally modified wood: Molecular reasons for wood performance improvement[J]. Holz als Roh– und Werkstoff , 56(3): 149–153.
    [71] Dirol, D. and R. Guyonnet. The improvement of wood durability by retification process[D]. IRG/WP 98–40015. Inter. Res. Group on Wood Protection, Stockholm, Sweden. 1993.
    [72] Vernois, M. Heat treatment of wood in France state of the art[C]. In: Proc. of Special Seminar "Review on heat treatments of wood," Antibes, France. 2001.
    [73]丁涛.压力蒸汽热处理对木材性能的影响及机理[D].南京:南京林业大学, 2010.
    [74]定明谦.浅谈松树的用途[J].甘肃林业, 2004, 4: 36.
    [75]孙会.马尾松木材高温常压热处理工艺研究[D].临安:浙江林学院, 2009.
    [76]刘振海,徐国华,张洪林.热分析仪器[M].北京:化学工业出版社, 2005.
    [77] Goring D. A. I. Thermal softening of lignin, hemicellulose, and cellulose[J]. Pulp and Paper magazine of Canada, 1963, 64: 517–527.
    [78]刘一星,赵广杰.木质资源材料学[M].北京:中国林业出版社, 2004.
    [79]沈恒范.概率论与数理统计教程[M].北京:高等教育出版社, 2003.
    [80] Newlin J A, Wilson T R. The relation of the shrinkage and strength properties of wood to its specific gravity[M]. Bull. No.676. USDA Forest Service,Forest Prod. Lab. Madison, WI. 1919.
    [81] Liska J A. Research progress on the relationships between density and strength[J]. Proc.the symposium on density: A key to wood quality, PP: USDA.Forest Service,Forest Prod. Lab.,Madison,WI. 1965. 89~97.
    [82] Armstrong J P, Skaar C, Zeeuwde C. The effect of specific gravity on some mechanical properties of some world woods[J]. Wood Science and Technology, 1984, (18): 137~146.
    [83] Walton D R, Armstrong J P. Taxonomic and gross anatomic influences on specific gravity–mechanical property relationship[J]. Wood Fiber Science, 1986, 18(3): 413–420.
    [84] Forest Products Laboratory. Wood handbook: Wood as an engineering material[M]. Agric–handb. 72.USDA Forest Service. Washington. DC. 1987.
    [85] Repellin, V., Guyonnet, R. Evaluation of heat–treated wood swelling by different scanning calorimetery in relation to chemical composition[J]. Holzforschung, 2006, 59: 28–34.
    [86]符若文,李谷,冯开才.高分子物理[M].北京:化学工业出版社, 2005.
    [87]过梅丽.高聚物与复合材料的动态力学热分析[M].北京:化学工业出版社, 2002.
    [88] J. A. Santos. Mechanical behaviour of Eucalyptus wood modified by heat[J]. Wood Science and Technology, 2000, 34: 39–43.
    [89] M. Borrega, P. P. Karenlampi. Mechanical behavior of heat–treated spruce (Picea abies) wood atconstant moisture content and ambient humidity[J]. Holz Roh Werkst, 2008, 66: 63–69.
    [90]马德柱,何平笙,徐种德,周漪琴.高聚物的结构与性能[M].北京:科学出版社, 1995.
    [91] White. R. H., M. A. Dietenberger. Wood products:Thermal degradation and fire[J]. Encyclopedia of materials:Sci.and Tech. 1998, 26: 9712–9716.
    [92]何曼君,张红东,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社, 2006.
    [93]张俐娜,薛奇,莫志深.高分子物理近代研究方法[M].武汉:武汉大学出版社, 2006.
    [94]过梅丽,赵得禄.高分子物理[M].北京:北京航空航天大学出版社. 2005.
    [95]李坚,等.木材波谱学[M].北京:科学出版社, 2003.
    [96]陆文达.落叶松木材干燥前后纤维素相对结晶度变化的初步研究[J].木材工业, 1988, 2(4): 1–5.
    [97] Chow S. Z., Pickeles K. J. Thermal softening and degradation of wood and bark[J]. Wood and Fiber Science, 1971, 3(3): 166–178.
    [98]刘振海,徐国华,张洪林.热分析仪器[M].北京:化学工业出版社, 2005.
    [99]南京林产工业学院.木材热解工艺学[M].北京:中国林业出版社, 1958.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700