用户名: 密码: 验证码:
外源微生物对小麦和蜈蚣草砷吸收转化的影响及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根际微生物在重金属元素的生物地球化学循环中扮演着重要的角色。大量的研究揭示了植物-根际微生物之间的联合作用在植物养分利用和重金属吸收方面所起到的作用,但是相关的机制尚缺乏充分的探讨。本项目以砷超富集植物蜈蚣草(Pteris vittata L.)和粮食作物小麦(Triticum aestivum L.)为供试材料,研究了不同的外源微生物(砷酸还原菌:Ts33、Ts41;亚砷酸氧化菌:C13、D14)对上述两种植物吸收、积累和转化As的影响及其机制,研究结果对于开发有效的植物-微生物联合修复技术,及寻找抑制农作物吸收As、保障农产品品质安全的技术方法具有重要意义。主要研究结果如下:
     1.采用石英砂培试验研究了砷酸还原菌(Ts33、Ts41)对小麦As吸收和价态变化的影响。研究结果表明:在低As处理浓度(≤10 mg·kg-1)时,除Ts41对小麦地上部的作用外,添加砷酸还原菌能够促进小麦对As的吸收,小麦地上部和地下部As浓度分别是不加菌处理的1.03-2.30倍和1.10-6.07倍。但是,随着As处理浓度的升高,添加砷酸还原菌能明显抑制小麦对As的吸收。与不加菌相比,添加砷酸还原菌小麦地上部、地下部As浓度分别减少64.04%-95.85%和2.58%-78.08%。As(Ⅲ)和As(Ⅴ)是As在小麦体内存在的两种主要价态。砷酸还原菌对小麦地上部As价态的影响不太,但是能显著提高小麦地下部和砂培营养液中As(Ⅲ)的百分含量,分别是不加菌处理的1.95和4.16倍。
     2.研究了石英砂培条件下砷酸还原菌(Ts33、Ts41)对小麦抗As胁迫反应的影响。研究结果表明:低浓度As(<20 mg·kg-1)处理提高小麦叶片SOD、POD、CAT活性和GSH含量,而其中SOD活性在As处理浓度>10 mg·kg-1时就开始降低;高浓度As处理下(≥20 mg·kg-1),叶片SOD、POD、CAT活性和GSH含量降低。另外,添加砷酸还原菌(Ts33和Ts41)能显著增加叶片SOD、POD、CAT活性,同时降低MDA含量。添加Ts33和Ts41后,小麦叶片SOD、POD、CAT活性最大为不加菌对照的2.27、2.14、1.18倍,而MDA含量降低最大时其值是不加菌对照的38.29%。
     3.收集和测定了添加砷酸还原菌(Ts33、Ts41)和As胁迫下小麦根系分泌物中的有机酸。研究结果表明:根系分泌有机酸的种类随As处理浓度的增加而增加。当As处理浓度为0 mg·kg-1时,小麦根系主要分泌的是草酸和乙酸;当As处理浓度为5 mg·kg-1时,增加分泌苹果酸;而As处理浓度≥10 mg·kg-1时,增加分泌酒石酸和柠檬酸。同时,As处理浓度的增加也促进根系分泌物分泌量的增加。其中,苹果酸、酒石酸和柠檬酸的增加达到显著差异,在As处理浓度为50 mg·kg-1时分别是As处理浓度为10 mg·kg-1时的5.46、1.06和1.97倍。另外,添加外源微生物会减少小麦根系分泌有机酸的种类。与不加菌处理相比,添加微生物处理的小麦根系分泌物中没有检测到酒石酸和柠檬酸。在微生物作用下,小麦根系分泌物的分泌量也有减少,其中苹果酸的分泌量显著减少。Ts41处理下小麦分泌的苹果酸量减少最多,只有不加菌处理的28.46%。
     4.应用土壤盆栽试验研究了砷酸还原菌(Ts33、Ts41)和亚砷酸氧化菌(C13、D14)对蜈蚣草As吸收和价态的影响。研究结果表明:2类微生物都可以促进蜈蚣草对As的吸收。比如,在加菌处理5 d后,蜈蚣草地上部和地下部As浓度分别增加86.33%-187.13%和53.93%-108.82%。另外,砷酸还原菌能够将蜈蚣草体内As(Ⅲ)的百分含量提高2.99-49.01%;而亚砷酸氧化菌能够将蜈蚣草体内As(Ⅴ)的百分含量提高9.09-22.91%。
     5.测定了砷酸还原菌(Ts33、Ts41)和亚砷酸氧化菌(C13、D14)作用下土壤的As含量和As价态。研究结果表明:添加微生物能够使根际As含量减少9.97%-18.64%。砷酸还原菌能够促进土壤中的As(Ⅴ)还原为As(Ⅲ),只加砷酸还原菌处理的土壤中As(Ⅲ)的百分含量为27.90%-30.87%。但是,蜈蚣草的根际活动会减弱砷酸还原菌对土壤中As的还原作用。种植蜈蚣草同时又添加砷酸还原菌Ts41的处理中,蜈蚣草根际土As(Ⅲ)的百分含量为只添加Ts41处理土的74.57%-80.86%。
     6.收集和测定了在盆栽土壤中添加砷酸还原菌(Ts33、Ts41)和亚砷酸氧化菌(C13、D14)时蜈蚣草根系分泌物中的有机酸。研究结果表明:2类微生物作用对根系分泌物中有机酸组成的影响都不大,但是能够增加分泌的量。根系分泌物中有机酸主要为草酸、苹果酸、乙酸和琥珀酸,其中草酸的质量分数最高,超过了总酸的56%,是蜈蚣草根系分泌的低分子量有机酸的主要成分。草酸增加了22.74%-270.93%,苹果酸增加了31.06%-127.70%,乙酸增加了19.49%-80.12%。
Rhizosphere microorganisms play an important role in the biogechemical cycling of heavy metals. Many studies have revealed the synergetic effect between plant and rhizosphere microorganism in nutrient utilization and heavey metals uptake. However, the relevant mechanisms are still not clear.
     In order to find an effective plant-microbial remediation technology for polluted soils, and to obtain a way to inhibit accumulation of pollutants in agricultural crops for the food safety, this research used an arsenic hyperaccumulator (Pteris vittata L.) and a food crop wheat (Triticum aestivum L.) as materials to study the influence of arsenate reducing bacteria (Ts33, Ts41) and arsenite oxization bacteria (C13, D14) on the uptake, utilization and speciation of arsenic and the primary mechanisms. The main results are summarized as follows:
     1. The effects of arsenate reducing bacteria (Ts33, Ts41) on arsenic uptake and speciation in wheat were studied via the quartz pot experiment. The results showed that except for As uptaken by wheat shoots influenced by Ts41, addition of arsenate reducing bacteria promoted the As uptake of wheat with the increase of As concentrations when As concentration<= 10 mg·kg-1, being 1.03-2.30 times in shoots and 1.10-6.07 times in roots in comparison with the control without bacteria. However, with the increase of the concentration of As, the bacteria activities inhibited the As uptake of wheat. Compared to the control without bacteria addition, As concentrations in shoots and roots were decreased by 64.04%-95.85% and 2.58%-78.08% respectively. The As(Ⅲ) and As(Ⅴ) were the main species of arsenic in wheat. Arsenate reducing bacteria hardly had effects on the arsenic speciation in wheat shoots, but could increased As(Ⅲ) in wheat roots and sand culture nutrient solution, with the increase of 1.95 and 4.16 times over the control without bacteria addition.
     2. The effects of arsenate reducing bacteria (Ts33, Ts41) on the arsenic stressed response of wheat under quartz pot growth condition were studied. The results showed that As treatments at the concentration of< 20 mg·kg-1 improved the activity of SOD, POD, CAT and the content of GSH in wheat leaves, but had the opposite effect at As>= 20 mg·kg-1. In addition, the bacteria (Ts33, Ts41) increased SOD, POD, CAT activity and decreased MDA content. The greatest activity of SOD, POD, CAT in wheat leaves with Ts33, Ts41 treatments were 2.27,2.14,1.18 times respectively over the control without bacteria, and the lowest MDA content was only 38.29% of the control without bacteria.
     3. The organic acids in root exudates of wheat under arsenic stress influenced by arsenate reducing bacteria (Ts33, Ts41) were determined by HPLC techniques. The results showed that the increase of the concentration of As treatment raised the kind of wheat root exudates. The oxalic acid and acetic acid were the major components of wheat root exudates without As addition. However, malic acid, and tartaric acid/citric acid emerged when treated with 5 or 10 mg·kg-1 of As respectively. Meanwhile, the increase of As concentration in the treatments also raised the quantity of wheat root exudates. The amounts of malic acid, tartaric acid and citric acid increased signifcantly at the As concentration of 50 mg·kg-1, which were 5.46,1.06 and 1.97 times over the treatment with As concentration of 10 mg·kg-1. Addition of the bacteria reduced the types of organic acids in wheat root exudates. The tartaric acid and citric acid were not detected when adding the bacteria. In addition, the quantity of malic acid was significantly decreased by Ts33, Ts41 treatments, and the quantity of malic acid in Ts41 treatment reduced the most, which was by 28.46%% in comparison with the control without baterica addition.
     4. A soil pot experiment was carried out to study the effects of arsenate reducing bacteria (Ts33, Ts41) and arsenite oxidizing bacteria (C13, D14) on As uptake and speciation of Pteris vittata. The results showed that addition of two kinds of bacteria increased As uptake by Pteris vittata, with the As content of shoots and roots of Pteris vittata increased by 86.33%-187.13% and 53.93%-108.82% respectively. In addition, arsenate reducing bacteria raised As(Ⅲ) percentages in Pteris vittata by 2.99%-49.01% compared with the control without bacteria addition. Meanwhile, the arsenite oxidizing bacteria raised As(Ⅴ) percentages by 9.09%-22.91%.
     5. As content and speciation in soil was measured to understand the effects of arsenate reducing bacteria (Ts33, Ts41) and arsenite oxidizing bacteria (C13, D14). The results showed that addition of two kinds of bacteria decreased As contents in rhizosphere soils by 9.97%-18.64%. Arsenate reducing bacteria contributed to the reduction of As(Ⅴ) in soil, and the soil As(Ⅲ) percentages were 27.90%-30.87% when treated merely with the bacteria. However, the root activities of Pteris vittata inhibited the arsenate reduction by arsenate reducing bacteria. The As(Ⅲ) percentages in rhizosphere soil of the treatments with both Pteris vittata and Ts41 were 74.57%-80.86% of the treatments Ts41.
     6. The determination of organic acids in root exudates of Pteris vittata influenced by arsenate reducing bacteria (Ts33, Ts41) and arsenite oxidizing bacteria (C13, D14). The results showed that bacteria addition had little impacts on the organic acid types of root exudates. Oxalic acid, acetic acid, malic acid and succinic acid were the mian organic acids in root exudates, and the concentration of oxalic acid was the highest, which was more than 56% of the total of these four kinds of organic acids. However, bacteria addition increased the exudating amount of organic acids, as the amount of oxalic acid, malic acid and acetic acid increased by 22.74%-270.93%,31.06%-127.70% and 19.49%-80.12% respectively.
引文
1.白洁,刘洁,孙迎中.川产五加属植物的薄层层析研究.四川大学学报(自然科学版).2000,37(4):624-628.
    2.白建峰,林先贵,尹睿等.砷污染土壤的生物修复研究进展.土壤.2007,39(5):692-700.
    3.北京农业大学植物生态病教研室(译)植物根际生态学与根病生物防治进展.北京:中国人民大学出版社;1991,130-139.
    4.柴强,黄高宝.根系分泌物在不同播种模式中的化感效应研究.甘肃农业大学学报.2004,39(2):163-167.
    5.曹丽霞,陈贵林,敦惠霞等.缺磷胁迫对黑籽南瓜幼苗根系生长和根系分泌物的影响.华北农学报.2009,24(5):164-169.
    6.陈宏宇,李晓鸣,王敬国.抗病性不同大豆品种根面及根际微生物区系的变化Ⅰ.非连作大豆(正茬)根面及根际微生物区系的变化.植物营养与肥料学报.2005,11(6):804.
    7.陈宏宇,李晓鸣,王敬国.抗病性不同大豆品种根面及根际微生物区系的变化Ⅱ.连作大豆(重茬)根面及根际微生物区系的变化.植物营养与肥料学报.2006,12(1):104-108.
    8.陈怀满土壤-植物系统中的重金属污染.北京:科学出版社;1996.
    9.陈静,王学军,朱力军.pH对砷在贵州红壤中的吸附的影响.土壤.2004,36(2):211-214.
    10.陈俊伟,倪竹如,刘智宏.利用14C示踪法研究杉木光合产物分配和杉木根系分泌物.核农学报.1994,8(3):167-171.
    11.陈同斌,韦朝阳,黄泽春等.砷超富集植物蜈蚣草及其对砷的富集特征.科学通报.2002,47(3):207-210.
    12.陈同斌,阎秀兰,廖晓勇等.蜈蚣草中砷的亚细胞分布与区隔化作用.科学通报.2006,50(24):2739-3744.
    13.陈晓英,唐胜群.土壤污染治理中的植物修复技术.福建农业科技.2007(2):75-77.
    14.陈岳龙,杨忠芳,赵志丹.同位素地质年代学与地球化学.北京:地质出版社, 2005,183-185.
    15.程智慧,耿广东,张素勤等.辣椒对莴苣的化感作用及其成分分析.园艺学报.2005,32(1):100.
    16.丁成,王世和,杨春生.草浆废水灌溉对海涂湿地土壤及芦苇生长的影响.生态环境.2005,14(1):21-25.
    17.樊石磊.内蒙古西部胡杨根系分泌物空间分布特征及土壤酶活性研究.[硕士学位论文].内蒙古:内蒙古农业大学,2009.
    18.段桂兰,王利红,陈玉等.植物超富集砷机制研究的最新进展.环境科学学报.2007,27(5):714-720.
    19.段学军,宋清涛.土壤重金属污染的微生物生态效应.中原工学院学报.2005,16(1):1-4.
    20.冯莉,张玲华,田兴山.荧光假单胞菌对烟草根际微生物种群数量及根系活力的影响.农业环境科学学报.2007,26(S2):537-539.
    21.郜红建,常江,张自立等.镧对水稻根分泌物中氨基酸和有机酸含量的影响.安徽农业大学学报.2004,31(1):58-61.
    22.郜红建,常江,张自立等.研究植物根系分泌物的方法.植物生理学通讯.2003,39(1):56-60.
    23.格拉希维里,契切夫,帕塔尔肯等.核素数据手册.北京:原子能出版社;2004.
    24.弓明钦,陈应龙,仲崇禄.菌根研究及应用.北京:中国林业出版社;1997,1-196.
    25.郭学军,黄巧云,赵振华等.微生物对土壤环境中重金属活性的影响.应用与环境生物学报.2002,8(1):105-110.
    26.郭长城,李鑫,胡洪营.芦苇生物活性组分对小球藻生长的促进效应.中国环境科学.2009,29(11):1186-1189.
    27.郝乾坤.植物根分泌物及其效应.杨凌职业技术学院学报.2004,3(1):53-56.
    28.胡锋,李辉信,史玉英等.两种基因型小麦根际土壤生物动态及根际效应.土壤通报.1998,29(3):133-135.
    29.胡浩,潘杰,曾清如等.低分子有机酸淋溶对土壤中重金属Pb Cd Cu和Zn的影响.农业环境科学学报.2008,27(4):1611-1616.
    30.胡留杰,白玲玉,李莲芳等.土壤中砷的形态和生物有效性研究现状与趋势[J].核农 学报.2008,22(3):383-388.
    31.胡学玉,李学垣,谢振翅.不同青菜品种吸锌能力差异及与根系分泌物的关系.植物营养与肥料学报.2002,8(2):234-238.
    32.胡元森,李翠香,杜国营等.黄瓜根分泌物中化感物质的鉴定及其化感效应.生态环境.2007,16(3):954-957.
    33.黄冬芬.水稻对土壤重金属镉的响应及其调控.[博士学位论文].江苏:扬州大学图书馆,2008.
    34.黄泽春,陈同斌,雷梅等.砷超富集植物中砷化学形态及其转化的EXAFS研究.中国科学C辑.2003,6(1):61-69.
    35.黄自力,胡岳华,邓春华.涂铁石英砂吸附Cr(Ⅵ)的研究.武汉科技大学学报(自然科学版).2006,29(5):465-468.
    36.贾黎明,冯菊芬,文学军等.循环水根系分泌物收集技术的研究及应用.北京林业大学学报.2003,25(6):6-10.
    37.蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展.土壤.2004,36(3):264-270.
    38.蒋桂芳,任文彬,张世清等.脱乙酰几丁质酶降解产物的纸层析分析.华南热带农业大学学报.2006,12(3):28-31.
    39.蒋先军,黄昭贤,谢德体等.硅酸盐细菌代谢产物对植物生长的促进作用.西南农业大学学报.2000,22(2):116-119.
    40.金婷婷,刘鹏,黄朝表等.铝胁迫下大豆根系分泌物对根际土壤的影响.中国油料作物学报.2007(1):42-48.
    41.金婷婷,刘鹏,黄朝表等.铝胁迫下大豆根系分泌物对根际土壤微生态的影响.土壤学报.2008(3):526-534.
    42.康丽华.桉树与联合固氮菌相互作用的研究.微生物学通报.2002,29(4):14-18.
    43.孔垂华,徐效华,梁文举等.水稻化感品种根分泌物中非酚酸类化感物质的鉴定与抑草活性.生态学报.2004,24(7):1317-1322.
    44.李春喜,邵云,李丹丹.砷胁迫对小麦萌发过程中戊聚糖含量和木聚糖酶活性的影响.麦类作物学报.2006,26(6):108-114.
    45.李德华,贺立源,李建生等.一种根系分泌物中有机酸的前处理和高效液相色谱检测方法.植物生理学通讯.2004,40(2):219-222.
    46.李合生,孙群,赵世杰等.植物生理生化实验原理和技术.北京:高等教育出版社;2000a.
    47.李合生,孙群,赵世杰等.植物生理生化实验原理和技术.北京:高等教育出版社;2000b,167-169.
    48.李红霞,马伟芳,赵新华.浅述利用植物对受污染土壤中重金属的修复.吉林农业科学.2007,32(1):35-39.
    49.李文学,陈同斌,陈阳等.蜈蚣草毛状体对砷的富集作用及其意义.中国科学C辑.2004,34(5):402-408.
    50.李勇,黄小芳,丁万隆.营养元素亏缺对人参根分泌物主成分的影响.应用生态学报.2008,19(8):1688-1693.
    51.连翠飞,李社增,晁春燕等.产植物激素拮抗细菌CX-5-2的筛选、鉴定及其特性研究.植物病理学报.2007,37(2):197-203.
    52.廖继佩,林先贵,曹志洪等.一种新型连续根分泌物收集装置.土壤.2003,35(4):311-313.
    53.廖敏.菌藻共生体去除废水中砷初探.环境污染与防治.1997,19(2):11-13.
    54.廖晓勇,陈同斌,谢华等.磷肥对砷污染土壤的植物修复效率的影响:田间实例研究.环境科学学报.2004,24(3):455-462.
    55.廖晓勇,谢华,陈同斌等.蜈蚣草的超微结构和砷、钙的亚细胞分布.植物营养与肥料学报.2007,13(2):305-312.
    56.林海涛,史衍玺.铅、镉胁迫对茶树根系分泌有机酸的影响.山东农业科学.2005(2):32-34.
    57.林琦,陈英旭,陈怀满等.根系分泌物与重金属的化学行为研究.植物营养与肥料学报.2003,9(4):425-431.
    58.刘尼歌,莫丙波,严小龙等.大豆和水稻对铝胁迫响应的生理机制.应用生态学报.2007,18(4):853-858.
    59.刘润进,李晓林丛枝菌根及其应用.北京:科学出版社;2000.
    60.刘强,郑绍建,林咸永.植物适应铝毒胁迫的生理及分子生物学机理.应用生态学报.2004,15(9):1641-1649.
    61.刘云国,冯宝莹,樊霆等.真菌吸附重金属离子的研究.湖南大学学报(自然科学版). 2008,35(1):71-74.
    62.龙安华,倪才英,宋玉斌.土壤重金属污染的植物修复评价及展望.江苏环境科技.2005,18(3):43-45.
    63.龙安华,倪才英,宋玉斌.土壤重金属污染的植物修复评价及展望.江苏环境科技.2005,18(3):43-45.
    64.卢豪良,严重玲.秋茄(Kandelia candel(L))根系分泌低分子量有机酸及其对重金属生物有效性的影响.生态学报.2007,27(10):4173-4181.
    65.陆文龙,曹一平,张福锁.根分泌的有机酸对土壤磷和微量元素的活化作用.应用生态学报.1999,10(3):379-382.
    66.罗明,陈新红,李兢等.种保素对几种作物根际微生物效应的影响.生态学杂志.2000,19(3):69-72.
    67.马云龙,曾清如,胡浩等.低分子有机酸对土壤中重金属的解吸及影响因素.土壤通报.2008,39(6):1419-1423.
    68.庞欣,王东红,彭安.汞胁迫对小麦幼苗抗氧化酶活性的影响.环境化学.2001,20(4):351-354.
    69.彭艳,李洋,杨广笑等.铝胁迫对不同小麦SOD、CAT、POD活性和MDA含量的影响.生物技术.2006,16(3):38-42.
    70.邵云,姜丽娜,李万昌等.砷、铅胁迫对小麦幼苗毒害效应及叶片下表皮扫描电镜观察.西北农业学报.2009,18(1):133-138.
    71.沈瑞清,张萍,康萍芝等.根际微生物与植物病害关系的研究进展.宁夏农林科技.2006(5):46-48.
    72.施积炎,陈英旭,林琦等.根分泌物与微生物对污染土壤重金属活性的影响.中国环境科学.2004,24(3):316-319.
    73.石荣,贾永锋,王承智.土壤矿物质吸附砷的研究进展.土壤通报.2007,38(3):584-589.
    74.宋红波,范辉琼,杨柳燕等.砷污染土壤生物挥发的研究.环境科学研究.2005,18(1):61-64.
    75.苏廷芝,顾国维.活性污泥法处理含砷废水初探.四川环境.2006,25(4):68-71.
    76.孙磊,陈兵林,周治国.麦棉套作Bt棉花根系分泌物对土壤速效养分及微生物的影 响.棉花学报.2007,19(1):18-22.
    77.孙瑞建,潘付红.小麦新品种郑麦9023特征特性及高产栽培技术.中国种业.2003,(6):49.
    78.唐新莲,韦进进,李耀燕等.在铝胁迫下黑麦根系分泌的柠檬酸和苹果酸的解毒机制的研究.广西农业生物科学.2006(4):325-329,340.
    79.陶红群,李晓林,张俊伶.丛枝菌根菌丝对重金属元素Zn和Cd吸收的研究.环境科学学报.1998,18(5):545-548.
    80.滕应,黄昌勇,龙健等.不同相伴阴离子对镉污染红壤微生物区系及群落功能多样性的影响.环境科学学报.2003,23(3):370-375.
    81.滕应,骆永明,李振高.污染土壤的微生物修复原理与技术进展.土壤.2007,39(4):497-502.
    82.田中民,秦芳玲,王波.缺磷白羽扇豆根系分泌物收集方法的比较研究.西北农林科技大学学报(自然科学版).2003,31(4):154-158.
    83.涂书新,郭智芬,孙锦荷.富钾植物籽粒苋根系分泌物及其矿物释钾作用的研究.核农学报.1999,13(5):305-311.
    84.涂书新,韦朝阳.我国生物修复技术的现状与展望.地理科学进展.2004,23(6):20-29.
    85.汪行玉,赵可夫.植物重金属伤害及其抗性机理.应用与环境生物学报.2001,7(1):92-99.
    86.王晶英,敖红,张杰等.植物生理生化实验技术与原理.哈尔滨:东北林业大学出版社;2003,82-83.
    87.王琳,王林嵩,王丽等.Hg2+胁迫对小麦幼苗POD、CAT(?)口SOD同工酶的影响.安徽农业科学.2008,36(35):15326-15328,15338.
    88.万泉.铝胁迫对龙眼幼苗根区分泌物的影响.林业科学.2007(11):21-26.
    89.王水良,王平,王趁义.铝胁迫下马尾松幼苗有机酸分泌和根际pH值的变化.生态与农村环境学报.2010,26(1):87-91.
    90.王新,周启星.重金属与土壤微生物的相互作用及污染土壤修复.环境污染治理技术与设备.2004,5(11):1-5.
    91.王英,凯撒·苏来曼,李进等.伊贝母根系分泌物自毒作用研究.植物研究. 2010,30(2):248-252.
    92.王艳红,龙新宪,吴启堂.两种生态型东南景天根系分泌物的差异性.生态环境.2008,17(2):751-757.
    93.王紫娟,刘万学,蔡静萍等.紫茎泽兰根系分泌物对旱稻的化感作用.现代农业科学.2007(16):71-72.
    94.魏大成.环境中砷的来源.国外医学地理分册.2003,24(4):173-175.
    95.魏树和,周启星.重金属污染土壤植物修复基本原理及强化措施探讨.生态学杂志.2004,23(1):65-72.
    96.魏树和,周启星,张凯松等.根际圈在污染土壤修复中的作用与机理分析.应用生态学报.2003,14(1):144-148.
    97.翁焕新,张霄宇,邹乐君等.中国土壤中砷的自然存在状况及其成因分析.浙江大学学报(工学版).2000,34(1):88-92.
    98.吴佳,涂书新.植物根系分泌物对污染胁迫响应的研究进展.核农学报.2010,24(6):1320-1327.
    99.吴佳,谢明吉,杨倩等.砷污染微生物修复的进展研究.环境科学2011,32(3):246-254.
    100.吴剑,杨柳燕,肖琳.微生物挥发砷影响因素研究.见:《第三届全国环境化学学术大会论文集》.中国化学会,北京,2005.
    101.吴瑞娟,金卫根,邱峰芳.土壤重金属污染的生物修复.安徽农业科学.2008,36(7):2916-2918.
    102.吴洵.重视茶园砷污染.中国茶叶.2003,25(6):11-12.
    103.夏立江,华珞,李向东.重金属圬染生物修复机制及研究进展.核农学报.1998,12(1):59-64.
    104.项学敏,宋春霞,李彦生等.湿地植物芦苇和香蒲根际微生物特性研究.生态与环境.2004,30(124):35-38.
    105.肖玲.砷对小麦种子萌发酶活性及呼吸强度影响的研究.陕西环境.1999,6(4):22-24.
    106.肖玲,梁圈社,王清华.砷对小麦种子萌发影响的探讨.西北农业大学学报.1998,26(6):56-60.
    107.谢正苗,黄昌勇,何振立.土壤砷的化学平衡.环境科学进展.1998,6(1):3.
    108.谢华,廖晓勇,陈同斌等.污染农田中植物的砷含量及其健康风险评估-以湖南郴州邓家塘为例.地理研究.2005,24(1):151-159.
    109.许超,夏北成.芘对玉米根系分泌氨基酸的影响.生态环境学报2009,18(1):172-175.
    110.徐红宁,许嘉琳.我国砷异常区的成因及分布.土壤.1996,28(2):80-84.
    111.徐卫红,王宏信,刘怀等Zn.Cd单一及复合污染对黑麦草根分泌物及根际Zn、Cd形态的影响.环境科学.2007,28(9):2089-2095.
    112.许晓路.As(Ⅲ)对活性污泥处理城市污水影响的动态模拟研究.环境科学学报.1995,15(4):416-422.
    113.许晓路,申秀英.半连续活性污泥法对污水中五价砷的去除.环境科学与技术.1995,70(3):31-34.
    114.宣之强.中国砷矿资源概述.化工矿产地质.1998(3):8-14.
    115.杨春艳,许琳,徐炎华.亚砷酸盐氧化酶及其相关基因的研究进展.见:《中国环境科学学会2009年学术年会论文集(第一卷)》.中国环境科学学会,北京,2009.
    116.杨广君.线辣椒根系分泌物对辣椒等受体作物生长发育的影响.[硕士学位论文].陕西:西北农林科技大学图书馆,2008.
    117.杨建峰,贺立源,左雪冬等.有潜在性的大孔吸附树脂模拟植物根系分泌有机酸吸附的方法.华北农学报.2007,22(3):127-131.
    118.杨景辉.土壤污染与防治.北京:科学出版社;1995.
    119.杨柳燕,肖琳.环境微生物技术.北京:科学出版社,2003,208-209.
    120.杨倩.生物提高植物修复砷污染土壤的效果和机理研究.[硕士学位论文].武汉:华中农业大学图书馆,2009.
    121.杨瑞吉,牛俊义.磷胁迫对油菜根系分泌物的影响.西南农业大学学报(自然科学版).2006,28(6):895-899.
    122.杨肖娥,龙新宪,倪吾钟.超累积植物吸收重金属的生理及分子机制.植物营养与肥料学报.2002,8(1):8-15.
    123.杨肖峨,龙新宪,倪吾钟等.东南景天(Sedum alfredii H)--一种新的锌超富集植物.科学通报.2002,47(13):1003-1006.
    124.杨仁斌,曹清如,周细红等.植物根系分泌物对铅锌尾矿污染土壤中重金属的活化效应.农业环境保护.2000,19(3):152-155.
    125.尹燕东,裘立群,魏珉等.温室CO2施肥对黄瓜幼苗根系生长及分泌物和伤流液组成的影响.生态学报.2010,30(7):1860-1867.
    126.于洋.蜈蚣草植酸酶特性和抗氧化系统对砷胁迫的响应研究.[硕士学位论文].武汉:华中农业大学图书馆,2008.
    127.甄文超,曹克强,代丽等.连作草莓根系分泌物自毒作用的模拟研究.植物生态学报.2004,28(6):828-832.
    128.曾宗梁.铅对鱼腥草根系生理的影响与鱼腥草对铅的抗性机理研究.[硕士学位论文].四川:四川农业大学图书馆,2007.
    129.张从,夏立江污染土壤生物修复技术.北京:中国环境科学出版社;2000.
    130.张敬锁,李花粉,衣纯真等.有机酸对活化土壤中镉和小麦吸收镉的影响.土壤学报.1999,36(1):61-66.
    131.张利,何新华,陈虎等.铅胁迫下杨梅根系分泌有机酸的研究.浙江林学院学报.2009,26(5):663-666.
    132.张玲,王焕校.镉胁迫下小麦根系分泌物的变化.生态学报.2002(4):496-502.
    133张汝民,张丹,白静等.不同苗龄梭梭根系分泌物组分分析.西北植物学报.2006,26(10):2150-2154.
    134.张汝民,张丹,陈宏伟等.梭梭幼苗根系分泌物提取方法的研究.干旱区资源与环境.2007,21(3):153-157.
    135.张太平,潘伟斌.根际环境与土壤污染的植物修复研究进展.生态环境.2003,12(1):76-80.
    136.张薇,魏海雷,高洪文等.土壤微生物多样性及其环境影响因子研究进展.生态学杂志.2005,24(1):48-52.
    137.张雪霞,贾永锋,陈亮等.砷还原菌群对砷的还原作用及菌群的多样性分析.生态学杂志.2009,28(1):64-69.
    138.张玉凤,冯固,李晓林.丛枝菌根真菌对三叶草根系分泌的有机酸组分和含量的影响.生态学报.2003,23(1):30-37.
    139.赵根成,廖晓勇,阎秀兰等.微生物强化蜈蚣草累积土壤砷能力的研究.环境科学. 2010,31(2):431-436.
    140.赵萍,利用根际微生物促进植物修复砷污染土壤的研究.[硕士学位论文].武汉:华中农业大学图书馆,2009.
    141.朱丽霞,章家恩,刘文高.根系分泌物与根际微生物相互作用研究综述.生态环境.2003,12(1):102-105.
    142.朱雅兰.重金属污染土壤植物修复的研究进展与应用.湖北农业科学.2010,49(6):1498-1499.
    143.朱艳霞东南景天(Sedum alfredii Hance)对镉的超积累与有机酸含量变化的关系.[硕士学位论文].杭州:浙江大学图书馆,2006.
    144.朱云集,王晨阳,马元喜等.砷胁迫对小麦根系生长及活性氧代谢的影响.生态学报.2000,20(4):707-710.
    145.周国华,黄怀曾,何红蓼.重金属污染土壤植物修复及进展.环境污染治理技术与设备.2002,3(6):33-39.
    146.周艳丽,大蒜(Allium sativum L.)根系分泌物的化感作用研究及化感物质鉴定.[博士学位论文].陕西:西北农林科技大学图书馆,2007.
    147.左元梅,陈清,张福锁.利用14示踪研究玉米/花生间作玉米根系分泌物对花生铁营养影响的机制.核农学报.2004,18(1):43-46.
    148.Agely A, Sylvia D, Ma L. Mycorrhizae increase arsenic uptake by hyperaccumulator (Pteris vittata L.). JEnviron Qual.2005,34(6):2181-2186.
    149.U.S. Environmental Protection Agency.011059-1997. Recent developments for in situ treatment of metal contaminated soils. Washington D.C..1997.
    150.Ahmed F, Killham K, Alexander I. Influences of arbuscular mycorrhizal fungus Glomus mosseae on growth and nutrition of lentil irrigated with arsenic contaminated water. Plant Soil.2006,258(1-2):33-41.
    151.Ahsan D, Delvalls T, Blasco J. Distribution of Arsenic and Trace Metals in the Floodplain Agricultural Soil of Bangladesh. B Environ Contam Tox.2009,82(1):11-15.
    152.Akins M, Lewis R. Chemical distribution and gaseous evolution arsenic-74 added to soils as DSMA-74As. Soil Sci Soc Am J.1976,40:655-658.
    153.Anderson C R, Cook G M. Isolation and Characterization of Arsenate-Reducing Bacteria from Arsenic-Contaminated Sites in New Zealand. Curr Microbiol. 2004,48(5):341-347.
    154.Arai Y, Lanzirotti A, Sutton S. Arsenic speciation and reactivity in poultry litter. Environ Sci Tech.2003,37(15):4083-4089.
    155.Asma R A, Pascale B, Patrick B. Diversity of arsenite transporter genes from arsenic-resistant soil bacteria. Res Microbiol.2007,158(2):128-137.
    156.Bais H P, Weir T L, Perry L G, et al. The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol. 2006,57(1):233-266.
    157.Baker A J M. Metal Toleranee. New Phytol.1987,106(Suppl):93-111.
    158.Beard H C, Lyerly L A. Separation of arsenic from antimony and bismuth by solvent extraction. Anal Chem.1991,33(12):1781-1782.
    159.Beck A, Lendzian K, Oven M, et al. Phyochelatin synthase catalyzes key step in turnover of glutathione conjugates. Phytochemistry.2003,62(3):423-431.
    160.Bernard R G. Phytoremediation:synergistic use of plants and bacteria to clean up the environment.Biotechnol Adv.2003,21(5):383-389.
    161.Bobrowicz P, Wysocki R, Owsianik G, et al. Isolation of three contiguous genes, ACR1, ACR2 and ACR3, involved in resistance to arsenic compounds in the yeast Saccharomyces cerevisiae. Yeast.1997,13(9):819-828.
    162.Boominathan R, Doran P M. Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechol.2003,101(2):131-146.
    163.Brooks R R, Lee J, Reeves R D, et al. Detection of nickeliferous rocks by alysus of herbarium species of indicator plants. J Geochem Explor.1977,7(5):49-57.
    164.Bulen W A, Varner J E, Burrell R C. Sepration of organic acids from plant tissues chromatographic technique.,Anal Chem.1952,24(1):187-190.
    165.Cao X, Ma L Q, Tu C. Antioxidative responses to arsenic in the arsenic-hyperaccumulator Chinese brake fern (Pteris vittata L.). Environ Pollut. 2004,128(3):317-325.
    166.Chaney R L, Malik M, Li Y M, et al. Phytoremediation of soil metals. Curr Opin Biotech.1997,8(3):279-284.
    167.Chang E H, Zhang S F, Wang Z Q, et al. Effect of Nitrogen and Phosphorus on the Amino Acids in Root Exudates and Grains of Rice During Grain Filling AAS. 2008,34(4):612-618.
    168.Charter R A, Tabatabai M A, Schafer J W. Arsenic, molybdenum, selenium and tungsten contents of fertilizers and phosphate rocks Comm Soil Sci Plant Anal. 1995,26(17/18):3051-3062.
    169.Chen Y X, Wang Y P, Lin Q, et al. Effect of copper- tolerant rhizosphere bacteria on mobility of copper in soil and copper accumulation by Elsholtzia splendens. Environ Int.2005,31(6):861-866.
    170.Chen Z, Tang C, Xu J. No-suppressed conductivity and indirect UV detection of carboxylic acids in environmental samples by ionexclusion chromatography using 2,6-pyridinedicarboxylic acidic eluent. Chromatogra.1999,859(2):173-181.
    171.Cobbett C S. Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Boil.2000,3(3):211-216.
    172.Cornu S, Breeze D, Saada A, et al. The influence of pH, electrolyte type, and surface coating on arsenate (Ⅴ) adsorption onto kaolinites. Soil Sci Soc Am J. 2003,67(4):1127-1132.
    173.Cox D, Alexander M. Effect of phosphate and other anions on trimethylarsine formation by Candida humicola. Appl Microbiol.1973,25(3):408-413.
    174.Creen H. Isolation and description of a bacterio causing oxidation of arsenite to arsenate in cattle-dipping baths. Rep Dir Vet Res S Afr.1918,6:593-599.
    175.Dakora F, Phillips D. Root exudates as mediators of mineral acquisition in low-nutrient environments. Plant Soil.2002,24(5):35-47.
    176.Delnomdedieu M, Basti M, Otvos J, et al. Reduction and binding of arsenate and dimethylarsinate by glutathione:a magnetic resonance study. Chem Biol Interact 1994,90(2):139-155.
    177.Duan G L, Zhu Y G, Tong Y P, et al. Characterization of arsenate reductase in the extract of root and fronds of Chinese brake fern, an arsenic hyperaccumulator. Plant Physiol.2005,138(1):461-469.
    178.Edvantoro B, Naidu R, Megharaj M, et al. Microbial formation of volatile arsenic in cattle dip site soils contaminated with arsenic and DDT. Appl Soil Ecol. 2004,25(3):207-217.
    179.Edvantoro B B, Naidu R, Megharaj M, et al. Changes in microbial properties associated with long-term arsenic and DDT contaminated at disused cattle dip sites. Ecotoxicol Environ Saf 2003,55(3):344-351.
    180.E1-Halmoucha Y, Benharratb H, Thalouarn P. Effect of root exudates from different tomato genotypes on broomrape (O. aegyptiaca) seed germination and tubercle development. Crop Prot.2006,25(5):501-507.
    181.Ellis P, Conrads T, Hille R. Crystal structure of the 100 kDa arsenite oxidase from Alcaligenes faecalis in two crystal forms at 1.64 angstrom and 2.03 angstrom. Structure.2001,9(2):125-132.
    182.Essema D, Wondimu T, Kosmus W. Study of the trend in the release of purgeable arsenic compounds from soil sample. Trace and Microprobe Techniques. 2001,19(2):279-288.
    183.Evidente A, Fernandez-Aparicio M, Andolfi A, et al. Trigoxazonane, a monosubstituted trioxazonane from Trigonella foenum-graecum root exudate, inhibits Orobanche crenata seed germination. Phytochemistry.2007,68(19):2487-2492.
    184. Evidente A, Fernandez-Aparicio M, Cimmino A, et al. Peagol and peagoldione, two new strigolactone-like metabolites isolated from pea root exudates. Tetrahedron Lett. 2009,50(50):6955-6958.
    185. Fan H, Su C, Wang Y, et al. Sedimentary arsenite-oxidizing and arsenate-reducing bacteria associated with high arsenic groundwater from Shanyin, Northwestern China. JAppl Microbiol.2005,105(2):529-539.
    186. Fan T W, Lane A N, Shenker M, et al. Comprehensive chemical profiling of gramineous plant root exudates using high-resolution NMR and MS. Phytochemistry. 2001,57(2):209-221.
    187. Fayiga A O, Ma L Q, Rathinasabapathi B. Effects of nutrients on arsenic accumulation by arsenic hyperaccumulator Pteris vittata L.. Environ Exp Bot. 2008,62(3):231-237.
    188. Fayiga A O, Ma L, Santos J, et al. Effects of arsenic species and concentrations on arsenic accumulation by different fern species in hydroponic system. Int J Phytoremediat.2005,7(3):231-240.
    189. Fitz W J, Wenzel W W. Arsenic transformations in the soil-rhizosphere-plant system: fundamentals and potential application to phytoremediation. J Biotechnol. 2002,99(3):259-278.
    190. Frey B, Keller C, Zierold K. Distribution of Zn in functionally different leaf epidermal cells of the hyperaccumulator Thlaspi caerulescens. Plant Cell Environ. 2000,23(7):675-687.
    191. Garbarino J, Rutherford D, Wershaw R. Degradation of Roxarsone in Poultry Litter: In the Proceedings of Arsenic in the Environment Workshop.2001.
    192. Garbarino J, Bednar A, Rutherford D. Environmental fate of roxarsone in poultry litter-I:degradation of roxarsone during composting. Environ Sci Tech. 2003,37(8):1509-1514.
    193. Ghosh A K, Bhattacharyya P, Pal R. Effect of arsenic contamination on microbial biomass and its activities in arsenic contaminated soils of Gangetic West Bengal, India. Environ Int.2004,30(4):491.
    194. Goh H, Lim T. Arsenic fractionation in a fine soil fraction and influence of various anions on itsmobility in the subsurface environment. Appl Geochem. 2005,20(2):229-239.
    195. Gonzaga M I S, Ma L Q, Santos J A G. Effects of plant age on arsenic hyperaccumulation by Pteris vittata L.. Water Air Soil Poll.2007,186(1-4):289-295.
    196. Gonzalez-Chavez C, Harris P, Dodd J. Arbuscular mycorrhizal fungi confer enhanced arsenate resistance on Holcus lanatus. New Phytol.2002,155(1):163-171.
    197. Grafe M, Eick M J, Grossl P R. Adsorption of arsenate (Ⅴ) and arsenite (Ⅲ) on goethite in the presence and absence of dissolved organic carbon. Soil Sci Soc Am J. 2001,65(6):1680-1687.
    198. Gramss G, Voigt K, Bergmann H. Plant availability and leaching of (heavy) metals form ammonium-, calcium-, carbohydrate-, and citric acid-treated uraniummine-dump soil. Plant Nutr Soil Sci.2004,167(4):417-427.
    199. Guo T R, Zhang G P, Zhou M X, et al. Influence of Aluminum and Cadmium Stresses on Mineral Nutrition and Root Exudates in Two Barley Cultivars. Pedosphere.2007,17(4):505-512.
    200. Guo X, Fujino Y, Kaneko S, et al. Arsenic contamination of groundwater and prevalence of arsenical dermatosis in the Hetao plain area, Inner Mongolia, China. Mol Cell Biochem.2001,222(1-2):137-140.
    201. Hammer D, Keller C. Change in the rhizosphere of metal-accumulating plants evidenced by chemical extractants. J Environ Qual.2002,31(5):1561-1569.
    202. Hao Z P, Wang Q, Christie P, et al. Allelopathic potential of watermelon tissues and root exudates. Sci Hortic-Amsterdam.2007,112(3):315-320.
    203. Hassler R, Klein D, Meglen R. Microbial contributions to soluble and volatile arsenic dynamics in retorted oil Shale. J Environ Qual.1983,13:466-470.
    204. He H B, Lin W X, Chen X X, et al. The differential analysis on allelochemicals extracted from root exudates in different allelopathic rice accessions. In: "Establishing the Scientific Base", Wagga Wagga, New South Wales, Australia, 2005,517-520.
    205. Hoven R V, Santini J. Arsenite oxidation by the heterotroph Hydrogenophaga sp. str. NT-14:the arsenite oxidase and its physiological electron acceptor. BBA. 2004,1656(2-3):148-155.
    206. Hua J, Lin X, Yin R, et al. Effects of arbuscular mycorrhizal fungi inoculation on arsenic accumulation by tobacco(Nicotiana tabacum L.). J Environ Sci.2009, 21(9):1214-1220.
    207. Huang X, El-Alawi Y, Penrose D, et al. A multi-process phytoremediation system for removal of polycyclic aromatic hydrocarbons from contaminated soils. Environ Pollut.2004,130(3):465-476.
    208. Inskeep W, Macur R, Hamamura N, et al. Detection, diversity and expression of aerobic bacterial arsenite oxidase genes. Environ Microbiol.2007,9(4):934-943.
    209. Jackson W, Pardue J. Potential for enhancement of biodegradation of crude oil in Louisana salt marshes using nutrient amendments. Water Air Soil Poll 1999,109(1-4):343-355.
    210. Ji G, Silver S. Reduction of arsenate to arsenite by the AraC protein of the arsenic resistance operon of Staphylococcus aureus plasmid p1258. P Natl Acad Sci USA. 1992,89:9474-9478.
    211. Jones D L, Darah P R, Kochian L V. Critical evaluation of organic acid mediated iron dissolution in the rhizosphere and its potential role in root iron uptake. Plant Soil. 1996,180(1):57-66.
    212. Kallio M, Korpela A. Analysis of gaseous arsenic species and stability studies of arsine and trimethylarsine by gas chromatography-mass spectrometry. Anal Chim Acta.2000,410(1-2):65-70.
    213. Kashyap D, Botero L, Franck W, et al. Complex regulation of arsenite oxidation in Agrobacterium tumefaciens. J Bacteriol.2006,188(3):1081-1088.
    214. Kerdchoechuen O. Methane emission in four rice varieties as related to sugars and organic acids of roots and root exudates and biomass yield Ecosystems Environ. 2005,108(2):155-163.
    215. Kertulis G M, Ma L Q, MacDonald G E, et al. Arsenic speciation and transport in Pteris vittata L. and the effects on phosphorus in the xylem sap. Environ Exp Bot. 2005,54(3):239-247.
    216. Kim S, Lim H, Lee I. Enhanced heavy metal phytoextraction by Echinochloa crus-galli using root exudates. JBiosci Bioeng,2010,109(1):47-50.
    217. Kramer U, Pickering I J, Prince R C. Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol. 2000,122(4):1343-1353.
    218. Krishnamurti G, Cieslinski G, Huang P, et al. Kinetics of cadmium release from soils as influenced by organic acid:Implication in cadmium availability. Environ Qual. 1997,26(1):271-277.
    219. Lee J G, Lee B Y, Lee H J. Accumulation of phytotoxic organic acids in reused nutrient solution during hydroponic cultivation of lettuce(Lactuca sativa L.). Sci Hortic-Amsterdam.2006,110(2):119-128.
    220. Leung H, Ye Z, Wong M. Interactions of mycorrhizal fungi with Pteris vittata(As hyperaccumulator) in As-contaminated soils. Environ Pollut.2006,139(1):1-8.
    221. Li X, Ma J, Matsumoto H. Pattern of Al-induced secretion of organic acids differs between rye and wheat. Plant Physiol.2000,123(4):1537-1543.
    222. Liao M X, Deng T L. Arsenic species analysis in porewaters and sediments using hydride generation atomic fluorescence spectrometry. J Environ Sci. 2006,5(18):995-999.
    223. Liao X Y, Chen T B, Lei M, et al. Root distributions and elemental accumulations of Chinese brake (Pteris vittata L.) from As-contaminated soils. Plant Soil. 2004,261 (1-2):109-116(108).
    224. Liu F, Cristofaro A De, Violante A. Effect on pH, phosphate and oxalate on the adsorption/desorption of arsenate on/from goethite. Soil Sci.2001,166(3):197-208.
    225. Liu Q, Hu C, Tan Q. Effects of As on As uptake, speciation, and nutrient uptake by winter wheat (Triticum aestivum L.) under hydroponic conditions. J Environ Sci. 2008,20(3):326-331.
    226. Liu Y, Zhu Y, Chen B, et al. Influence of the arbuscular mycorrhizal fungus Glomus mosseae on uptake of arsenate by the As hyperaccumulator fern Pteris vittata L. Mycorrhiza.2005a,15(3):187-192.
    227. Liu Y, Zhu Y, Chen B, et al. Yield and arsenate uptake of arbuscular mycorrhizal tomato colonized by Glomus mosseae BEG 167 in as spiked soil under glasshouse conditions. Environ Int.2005b,31(6):867-873.
    228. Lombi E, Zhao F J, Fuhrmann M, et al. Arsenic distribution and speciation in the fronds of the hyperaccumulator Pteris vittata. New Phytol.2002,156(2):195-203.
    229. Luo L, Zhang S, Shan X, et al. Oxalate and root exudates enhance the desorption of p,p'-DDT from soils. Chemosphere.2006,63(8):1273-1279.
    230. Ma J F, Zheng S J, Matsumoto H. Specific secretion of citric acid induced by stress in Cassia tora L. Plant Cell Physiol.1997,38(9):1019-1025.
    231. Ma J F, Hiradate S, Matsumoto H. High aluminum resistance in buckwheat Ⅱ Oxalic acid detoxifies aluminum intemally.Plant Physiol.1998,117(3):753-759.
    232. Ma J F, Shen R, Zhao Z, et al. Response of rice to Al stress and identification of quantitative Trait Loci for Al tolerance. Plant Cell Physiol.2002,43(6):652-659.
    233. Ma L Q, Komar K M, Tu C, et al. A fern that hyperaccumulates arsenic. Nature. 2001,409(6820):579.
    234. MacKenzie A, Logan E, Cook G. Pulford I D.A historical record of atmospheric depositional fluxes of contaminants in west-central Scotland derived from an ombrotrophic peat core. Sci Total Environ.1998,222(3):157-166.
    235. Maeda S. In Arsenic in the Environment, Part1:Cycling and Characterization (J.O.Nriagu, Ed.)Wiley.1994,155-187.
    236. Mandal B K, Suzuki K T. Arsenic round the world:a review. Talanta. 2002,58(1):201-235.
    237. Manning B A, Goldberg S. Adsorption and stability of arsenic (Ⅲ) at the clay mineral-water interface. Environ Sci Tech.1997,31(7):2005-2011.
    238. Margesin R, Schinner F. Efficiency of indigenous and introduced cold-adapted soil microorganisms for biodegradation of diesel oil in Alpine soils. Appl Environ Microb. 1997,63(7):2660-2664.
    239. Marschner H. Root- induced changes in the availability of micronutrients in the rhizosphere. New York.1991,503-528.
    240. Marschner H. Mineral nutrition of higher plants. Plant and animal cells process possibilites.1988,11 (2):147-148.
    241. Marseher H. Mineral in High Plant. London:Academic Press; 1995,23-50.
    242. Mascher R, Lippmann B, Holzinger S, et al. Arsenate toxicity:effects on oxidative stress response molecules and enzymes in red clover plants. Plant Sci. 2002,163(5):961-969.
    243. Mathews S, Ma L Q, Rathinasabapathi B, et al. Arsenic transformation in the growth media and biomass of hyperaccumulator Pteris vittata L. Bioresource Technol. 2010,101(21):8024-8030.
    245. Matschullat J. Arsenic in the geosphere -- a review. Sci Total Environ. 2000,249(1-3):297-312.
    246. Merrill W, French D W. The production of arsenous gases by wood-rotting fungi.Proc Minn Acad Sci.1964,31:105-106.
    247. Mench M, Fargues S. Metal uptake by iron efficient and inefficient oats. Plant Soil. 1994,165(2):227-233.
    248. Muratova A, Pozdnyakova N, Golubev S, et al. Oxidoreductase activity of sorghum root exudates in a phenanthrene-contaminated environment. Chemosphere. 2009a,74(8):1031-1036.
    249. Muratova A, Golubev S, Wittenmayer L, et al. Effect of the polycyclic aromatic hydrocarbon phenanthrene on root exudation of Sorghum bicolor (L.) Moench. Environ Exp Bot.2009b,66(3):514-521.
    250. Murugesan G, Sathishkumar M, Swaminathan K. Arsenic removal f rom groundwater by pret reated waste tea fungal biomass. Bioresource Technol. 2006,97(3):483-487.
    251. Nelson D R, Mele P M. Subtle changes in rhizosphere microbial community structure in response to increased boron and sodium chloride concentrations. Soil Biol Biochem.2007,39(1):340-351.
    252. Norra S, Berner Z, Agarwala P. Impact of irrigation with As rich groundwater on soil and crops:a geochemical case study in West Bengal Delta Plain, India. Appl Geochem.2005,20(10):1890-1906.
    253. Ordonez E, Letek M, Valbuena N, et al. Analysis of genes involved in arsenic resistance in Corynebacterium glutamicum ATCC 13032. Appl Environ Microb. 2005,71(10):6206-6215.
    254. Paul B K. Arsenic contamination awareness among the rural residents in Bangladesh. Soc Sci Med.2004,59(8):1741-1755.
    255. Pellet D M, Papemik L A, Kochian L V. Multiple aluminum resistance mechanisms in wheat:the roles of root apical phosphate and malate exudation. Plant Physiol Biochem.1996,112(2):591-597.
    256. Phillips D A, Fox T C, King M D, et al. Microbial products trigger amino acid exudation from plant roots. Plant Physiol.2004,136(1):2887-2894.
    257. Pickering I J, Prince R C, George M J, et al. Reduction and coordination of arsenic in Indian Mustard. Plant Physiol.2000,122(4):1171-1177.
    258. Pierce M L, Moore C B. Adsorption of arsenite and arsenate on amorphous iron hydroxide. Water Res.1982,16(7):1247-1253.
    259. Ponce M A, Scervino J M, Erra-Balsells R, et al. Flavonoids from shoots, roots and roots exudates of Brassica alba. Phytochemistry.2004,65(23):3131-3134.
    260. Pongratz R. Arsenic speciation in environmental samples of contaminated soil. Sci Total Environ.1998,224(1-3):133-141.
    261. Pope S, Smith S, Christophersen H. Arsenic uptake by Medicago truncatula:P supply and arbuscular mycorrhizal (AM) colonization do not reduce specific uptake from soil. In:Zhu YG, Lepp N, Naidu R (eds) Biogeochemistry of Trace Elements: Environmental Protection. In:Remediation and Human Health. Beijing:Tsinghua University Press,2007,863-864.
    262. Poynton C Y, Huang J W, Blaylock M J, et al. Mechanisms of arsenic hyperaccumulation in Pteris species:root As influx and translocation. Planta. 2004,219(6):1080-1088.
    263. Pearce R B, Callow M E, Macaskie L E. Fungal volatilization of arsenic and antimony and the sudden infant death syndrome. FEMS Microbiology Letter,1998,158:261-265.
    264. Quaghebeur M, Rengel Z. Arsenic speciation governs arsenic uptake and transport in terrestrial plants. Microchim Acta.2005,151(3-4):141-152.
    265. Quartacci M F, Irtelli B, Gonnelli C, et al. Naturally-assisted metal phytoextraction by Brassica carinata:Role of root exudates. Environ Pollut. 2009,157(10):2697-2703.
    266. Rathinasabapathi B, Raman S B, Kertulis G, et al. Arsenic-resistant proteobacterium from the phyllosphere of arsenic-hyperaccumulating fern (Pteris vittata L.) reduces arsenate to arsenite. Can JMicrobiol.2006,52(7):695-700.
    267. Raskin Ⅰ, Ensley B D. Phytoremediation of toxic metals:using plants to clean up the environment. Hardcover.1999
    268. Riveros P A, Dutrizac J E. Arsenic disposal practices in the metallurgical industry. Can Metall Quart.2001,40(4):395-420.
    269. Robert M, Berthelin J. Role of biological and biochemical factors in soil minerals weathering. In:Huang P M, Schnizer M, Division, Ed. Interactions of Soil Minerals with Natural Organics and Microbes. Special Publication,1986,453-465.
    270. Rodriguez R. Bioavailability and biomethylation of arsenic in contaminated soils and solid wastes. USA:Oklahoma State University,1998.
    271. Rosen B. Biochemistry of arsenic detoxification. FEBS Lett.2002,529(1):86-92.
    272. Rovira A D. Some quantitative and qualitative aspects of the rhizosphere. Australian Conference Soil Adelaide.1953,1:3-10.
    273. Ryan P R, Delhaize E, Randall P J. Characterization of Al-stimulated efflux of malate from the apices of Al-tolerance wheat roots. Planta.1995,196(1):103-110.
    274. Saada A, Breeze D, Crouzet C, et al. Adsorption of arsenate (Ⅴ) on kaolinite and on kaolinite-humic acid complexes:Role of humic acid nitrogen groups. Chemosphere. 2003,51(8):757-763.
    275. Sadiq M. Arsenic chemistry in soils:An overview of thermodynamic predictions and field observations. Water Air Soil Poll.1997,93(1-4):117-136.
    276. Santini J M, Sly L I, Schnagl R D, et al. A New Chemolithoautotrophic Arsenite-Oxidizing Bacterium Isolated from a Gold Mine:Phylogenetic, Physiological, and Preliminary Biochemical Studies. Appl Environ Microb. 2000,66(1):92-97.
    277. Solozhenkin P M, Nebera V P, Medvedeva-Lyalikova N N.Transformation of arsenic and tellurium in solution by fungi. Process Metallurgy,1999,9:779-787.
    278. Simon T. The effect of nickel and arsenic on the occurrence and symbiotic abilities of native rhizobia. Rostl Yyroba.2000,46(2):63-68.
    279. Smith E, Naidu R, Alston A M. Chemistry of arsenate in soils. I. sorption of arsenate and arsenite by four Australian soils. JEnviron Qual.1999,28(6):1719-1726.
    280. Smith E, Smith J, Naidu R. Distribution and nature of arsenic along former railway corridors of South Australia. Sci Total Environ.2006,363(1-3):175-182.
    281.Smith S, Read D. Mycorrhizal Symbiosis. London. The University Press.2008. Burlington
    282. Srivastava M, Ma L Q, Santos J A G. Three new arsenic hyperaccumulating ferns. Sci Total Environ.2006,364(1-3):24-31.
    283. Srivastava M, Ma L Q, Singh N, et al. Antioxidant responses of hyperaccumulator and sensitive fern species to arsenic J Exp Bot.2005,56(415):1335-1342.
    284. Sun G F. Arsenic contamination and arsenicosis in China. Toxicol Appl Pharm. 2004,198(3):268-271.
    285. Takeuchi M, Kawahata H, Gupta L P, et al. Arsenic resistance and removal by marine and non-marine bacteria. J Biotech.2007,127(3):434-442.
    286. Thanasoulias N C, Piliouris E T, Kotti M E, et al. Application of multivariate chemometrics in forensic soil discrimination based on the UV-Vis spectrum of the acid fraction of humus.Forensic Sci Int.2002,130(2-3):73-82.
    287. Tu C, Ma L Q. Effects of arsenic on concentration and distribution of nutrients in the fronds of the arsenic hyperaccumulator Pteris vittata L. Environ Pollut. 2005,135(2):333-340.
    288. Tu C, Ma L Q, Bondada B. Arsenic accumulation in the hyperaccumulator Chinese brake fern and its utilization potential for phytoremediation. J Environ Qual. 2002,31(5):1671-1675.
    289. Tu C, Ma L Q, Zhang W, et al. Arsenic species and leachability in the fronds of the hyperaccumulator Chinese brake (Pteris vittata).. Environ Pollut. 2003a,124(2):223-230.
    290. Tu S, Ma L Q. Interactive effects of pH, arsenic and phosphorus on uptake of As and P and growth of the arsenic hyperaccumulations Pteris vittata L. under hydroponic conditions.Environ Exp Bot.2003b,50(3):243-251.
    291. Tu S, Ma L Q. Comparison of arsenic and phosphate uptake and distribution in arsenic hyperaccumulating and nonhyperaccumulating Fern. J Plant Nutr. 2004a,27(7):1227-1242.
    292. Tu S, Ma L Q, Luongo T. Root exudates and arsenic accumulation in arsenic hyperaccumulating Pteris vittata and non-hyperaccumulating Nephrolepis exaltata. Plant Soil. 2004b,258(1-2):9-19.
    293. Tu S, Ma L Q, MacDonald G E, et al. Effects of arsenic species and phosphorus on arsenic absorption, arsenate reduction and thiol formation in excised parts of Pteris vittata L. Environ Exp Bot.2004c,51 (2):121-131.
    294. Turpeinen R, Pantsar-Kallio M, Kairesalo T. Role of microbes in controlling the speciation of arsenic and production of arsines in contaminated soils. Sci total Environ.2002,285(1-3):133-145.
    295. Turpeinen R, Kairesalo T, Haggblom M M. Microbial community structure and activity in arsenic-, chromium- and copper-contaminated soils. FEMS Microbiol Ecol.2004,47(1):39.
    296. Ultra V, Tanaka S, Sakural K, et al. Effects of arbuscular mycorrhiza and phosphorus application on arsenic toxicity in sunflower (Helianthus annuus L.) and on the transformation of arsenic in the rhizosphere. Plant Soil.2007,290(1-2):29-41.
    297.Unzr F, Shuttteworthk L. Microbial mobilization and immobilization of heavy metals. Biotechnology.1996,7(3):307-310.
    298. Valenzuela C, Campos V, Yanez J, et al. Isolation of Arsenite-Oxidizing Bacteria from Arsenic-Enriched Sediments from Camarones River, Northern Chile. B Environ Contam Tox.2009,82(5):593-596.
    299. Violante A, Pigna M. Competitive sorption of arsenate and phosphate on different clay minerals and soils. Soil Sci Soc Am J.2002,66(6):1788-1796.
    300. Wang J, Zhao F J, Meharg A A, et al. Mechanisms of Arsenic Hyperaccumulation in Pteris vittata. Uptake Kinetics, Interactions with Phosphate, and Arsenic Speciationl. Plant Physiol.2002,130(3):1552-1561.
    301. Wasay S, Barrington S, Tokunaga S. Organic acids for the in situ remediation of soils polluted by heavy metals:Soil flushing in columns. Water Air Soil Poll. 2001,127(1-4):301-314.
    302. Wei C Y, Chen T B. Arsenic accumulation by two brake ferns growing on an arsenic mine and their potential in phytoremediation. Chemosphere.2006a,63(6):1048-1053.
    303. Wei C Y, Sun X, Wang C, et al. Factors influencing arsenic accumulation by Pteris vittata:A comparative field study at two sites. Environ Pollut. 2006b,141(3):488-493.
    304. Whiting S, Souza M, Terry N. Rhizospherebacteria Mobilize Zn for Hyperaccumulation by Thlaspi Caerulescens. Environ Sci Tech. 2001,35(15):3144-3150.
    305. Wickes W A, Wiskish J T. Arsenate uncoupling oxidative phosphorylation in isolated plant mitochondria. A ust J Plant Physiol.1976,3(2):153-162.
    306. Wu S C, Cheung K C, Luo Y M, et al. Effects of inoculation of plant growth-promoting rhizobacteria on metal up take by Brassica juncea. Environ Pollut 2006,140(1):124-135.
    307. Xia Y, Chen B, Christie P, et al. Arsenic uptake by arbuscular mycorrhizal maize (Zea mays L.) grown in an arsenic-contaminated soil with added phosphorus. J Environ Sci.2007,19(10):1245-1251.
    308. Xu W H, Liu H, Ma Q F, et al. Root Exudates, Rhizosphere Zn Fractions, and Zn Accumulation of Ryegrass at Different Soil Zn Levels. Pedosphere. 2007a,17(3):389-396.
    309. Xu W H, Wang H X, Liu H, et al. Effects of Individual and Combined Pollution of Cd and Zn on Root Exudates and Rhizosphere Zn and Cd Fractions in Ryegrass (Loliurn perenne L.) J Environ Sci.2007b,28(9):2089-2095.
    310. Yang H, Wong J, Yang Z. Ability of Agorgyron elongatum to accumulate the single metal of cadmium, coppe, nickel and lead root exudation of organic acids. J Environ Sci.2001,13(3):368-375.
    311. Yang Q, Tu S, Liao X, et al. Arsenate reducing bacteria enhancing phytoremediation efficiency of polluted soils using Pteris vittata. Int J Phytorem.2010.
    312. Yu Y, Zhang S, Huang H, et al. Arsenic accumulation and speciation in maize as affected by inoculation with arbuscular mycorrhizal fungus Glomus mosseae. J Agr Food Chem.2009,57(9):3695-3701.
    313. Zaidi S, Usmani S, Singh B R, et al. Significance of Bacillus subtilis strain SJ-101 as a bioinoculant for concurrent plant growth promotion and nickel accumulation in Brassica juncea. Chemosphere.2006,64(6):991-997.
    314. Zeng F, Chen S, Miao Y, et al. Changes of organic acid exudation and rhizosphere pH in rice plants under chromium stress. Environ Pollut.2008,155(2):284-289.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700