用户名: 密码: 验证码:
熔融盐固体介质三轴压力容器的轴压摩擦标定及流体促进裂隙愈合的实验模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
汶川地震发震断层为高角度逆断层,断层倾角在50°-80°范围。高角度逆断层滑动需要断层深部有高压流体存在。论文总结了断层弱化的几种机制,以及流体在断层弱化和断层愈合中的作用。最后,运用高温高压实验手段模拟流体在断层弱化和愈合中的作用。
     流体对断层的弱化作用表现在物理作用和化学作用两方面。一方面,高压流体能够降低作用在断层上的有效应力,另一方面,流体会与断层中的矿物发生反应生成一些摩擦系数极低的层状矿物。流体与断层的反应是可逆的,地震后流体环境改变时,断层中的层状矿物可以转变成长石等强度较大的矿物,使裂隙愈合。因此,在地震循环的不同阶段,流体在断层中所起的作用不同。发生地震时,流体对断层的弱化作用主要表现在降低断层的有效应力;震后在流体作用下压溶、矿物相变等导致断层愈合。在间震期,流体不断积累,流体压力增大,同时流体的化学作用导致断层弱化。
     论文首先对高温高压设备进行了系统的轴压标定,对实验中影响轴压摩擦力的主要因素进行总结。轴压摩擦力可以概括为静摩擦力、软介质挤出摩擦力和轴压杆滑动摩擦力。大量实验数据表明,围压、温度、位移速率、装样方式(盐的类型)等实验条件都对轴压摩擦力有影响。其中,围压与静摩擦力和滑动摩擦力正相关;轴压位移速率与静摩擦力正相关,但影响较小,对滑动摩擦力没有影响;温度与静摩擦力和滑动摩擦力负相关,而且影响最显著。静摩擦力和挤出摩擦力对轴向应力的影响很小,影响应力精度的主要是滑动摩擦力,因此,轴压摩擦力标定主要是确定在给定的实验条件下,确定滑动摩擦力随位移的变化规律。
     在滑动摩擦力标定中,首先要确定摩擦力随轴向位移变化曲线的斜率k;其次,确定轴压杆与样品的压力接触点。在对实验曲线校正中,不仅要利用斜率k对压力接触点后面的应力曲线进行摩擦力校正,而且要对塑性变形段进行样品横截面的面积校正。盐套类型对轴压摩擦力的影响较大,特别是在实验条件接近盐的熔点时,摩擦力会显著降低,当样品周围的盐套处于熔融状态时,摩擦力最小。因此,使用低熔点的盐套,在较低的应变速率和较高的温度下,轴压摩擦力小,得到的实验曲线也更准确。在开展变形实验时,针对每种特定的实验条件和装样方式,在进入实际样品变形前,都要进行轴压摩擦力标定。如果实验样品强度比较低,要选择熔点低的盐套,而且要在盐套熔点温度之上进行变形实验,只有在样品的强度远大于盐套的强度时,才能够得到准确的样品强度。
     通过与气体设备相同条件下的实验比较,部分熔融盐装样方式的差应力误差约为+/-50MPa,熔融盐装样方式的误差为样品强度的5%-11%。部分熔融盐装样方式得到的样品强度比熔融盐得到的强度高约50MPa,并且都要高于相同条件下气体设备得到的强度,熔融盐实验的样品强度为气体设备强度的1.37倍。
     最后,采用花岗岩和角闪岩两种样品,在高温高压条件下模拟流体对断层破裂与愈合的影响。实验样品分别采用烘干处理样品和水中浸泡处理样品,代表无水和含水条件。通过实验力学数据和显微结构得出:干燥样品以贯通的破裂为主,含水样品以碎裂为主;在含水花岗岩样品中,长石微裂缝内出现暗色条带;在含水角闪岩样品中,高应变速率条件下形成的碎裂的角闪石,在低应变速率条件下边缘出现压溶作用;水和低应变速率能够促进反应或压溶发生,对断层的愈合有促进作用。
The Wenchuan earthquake fault is a high-angle reverse fault, which dips at 50°-80°. High-angle reverse fault can hardly slip without presence of high-pressure fluid at depth. In this thesis, several mechanisms for fault weakening and fault healing are summarized. And finally the rock and fluid interaction is simulated under high temperature and high pressure.
     Fluid plays an important role in fault weakening, both in the physical and chemical aspects. On one hand, high pressure fluid can reduce the effective stress on the fault. On the other hand, the minerals may alter to some layered minerals which have very low friction coefficients with the participation of the fluid. And the reaction is reversible, while fluid environment changes after the earthquake, the layered minerals can also change to the strong minerals, which is helpful to heal the fault. Thus, fluid plays different roles during the earthquake cycle. When an earthquake occurs, the high pressure fluid makes the effective stress on the fault very low. After the earthquake, fault healing occurs with the fluid-assistant pressure solution and mineral phase change. During the interseismic period, fluid pressure increases with the fluid accumulation, and the fault weakens by fluid chemical effect.
     Before the simulating experiments, firstly, a series of experiments are carried out to calibrate the axial pressure. The calibrating experiments use the axial load cycle method based on the calibrated result of confining pressure and temperature by HAN (2009). The difference between the axial loads shown on the machine and the true axial pressure pressed on the sample is called total friction. It contains two kinds of forces: the frictional contact force and the squeezing force. The squeezing force makes the hit-point unclear,but does not affect the sample strength. While the contact force increases with piston in,and it makes the sample strength inaccurate. A series of experiments were carried out to determine the factors affecting the axial load. The confining pressure,temperature and strain rate are thought to be the main factors. The result shows that low confining pressure, high temperature and low strain rate give rise to the low axial friction. Using the molten salt cell assembly,the contact friction can be accurately determined. While in the solid salt assembly,it is difficult to determine the contact friction from the total friction. When the temperature is 200°C above the melting temperature of the confining pressure medium,the experiment results are most reliable. While when the temperature is below the melting temperature of salt,axial velocity highly affects the axial friction.
     The purposes of axial friction calibration are to determine the axial contact friction with axial displacement, and to determine the hit-point between the axial piston and the sample. The slope k of the stress with the displacement can be used to represent the friction force. The starting point where the stress goes up sharply is the hit-point, which means the Al2O3 piston begins to be connected with the sample. If the salt is not sufficiently molten, the hit-point is usually unclear. So it is important to make the experiment condition higher than the molting point of the salt, if a more accurate result is wanted.
     Finally, a few experiments are carried out to simulate the fault or crack’s opening and healing. The samples are granite and amphibolite. Some of the samples are dried to remove the free surface water and part of the structure water, and some samples are dipped into water in order to increase water content. Both the mechanical data and the microstructure show that the dry samples contain main fracture through the whole sample, and it slips during the experiments, while the main deformation mechanism in the wet sample is cataclastic flow. The dark bands in the microcracks are found in the wet granite sample. The suture edges of the wet amphibolite grains show that pressure solution occurred during the slow rate loading. So it can be concluded that water can promote the water and rock reaction, or pressure solution, under a low strain rate.
引文
1. Baumgartner L P, Bos B, Connolly J A D et al., Fluids, Geochemical Cycles, and Mass Transport in Fault Zones. In: Tectonic Faults: Agents of Change on a Dynamic Earth, Handy M R, Hirth O, Hovius N (eds), Cambridge, The MIT Press: 403-425
    2. Blenkinsop T G, Deformation Microstructures and Mechanisms in Minerals and Rocks. Dordrecht; Boston: Springer. 2000. 150.
    3. Bos B, Spiers C J, Effect of Phyllosilicates On Fluid-Assisted Healing of Gouge-Bearing Faults. Earth and Planetary Science Letters, 2000, 184(1): 199-210.
    4. Burlini L, Bruhn D, High-Strain Zones: Laboratory Perspectives On Strain Softening During Ductile Deformation. High Strain Zones: Structure and Physical Properties, D. Bruhn & L. Burlini (eds), Geol. Soc. Spec. Pub, 2005, 245(1): 24.
    5. Chen W D, Tanaka H, Huang H et al., Fluid Infiltration Associated with Seismic Faulting: Examining Chemical and Mineralogical Compositions of Fault Rocks from the Active Chelungpu Fault. Tectonophysics, 2007, 443(3-4): 243-254.
    6. Collettini C, Cardellini C, Chiodini G et al., Fault Weakening Due to CO2 Degassing in the Northern Apennines; Short- and Long-Term Processes. Geological Society Special Publications, 2008, 299: 175-194.
    7. Cox S F, Etheridge M A, Crack-Seal Fibre Growth Mechanisms and Their Significance in the Development of Oriented Layer Silicate Microstructures. Tectonophysics, 1983, 92(1-3): 147-170.
    8. Famin V, Nakashima S, Boullier A M et al., Earthquakes Produce Carbon Dioxide in Crustal Faults. Earth and Planetary Science Letters, 2008, 265(3-4): 487-497.
    9. Faulkner D R, Jackson C A L, Lunn R J et al., A Review of Recent Developments Concerning the Structure, Mechanics and Fluid Flow Properties of Fault Zones. Journal of Structural Geology, 2010, 32(11): 1557-1575.
    10. Fujimoto K, Ohtani T, Shigematsu N et al., Water-Rock Interaction Observed in the Brittle-Plastic Transition Zone. Earth Planets and Space, 2002, 54(11): 1127-1132.
    11. Gleason G C, Tullis J, Improving Flow Laws and Piezometers for Quartz and Feldspar Aggregates. Geophysical Research Letters, 1993, 20(19): 2111-2114.
    12. Gleason G C, Tullis J, A Flow Law for Dislocation Creep of Quartz Aggregates Determined with the Molten Salt Cell. Tectonophysics, 1995, 247(1-4): 1-23.
    13. Goldsby D L, Tullis T E, Low Frictional Strength of Quartz Rocks at Subseismic Slip Rates. Geophysical Research Letters, 2002, 29(17): 21-25.
    14. Gratier J P, Fault Permeability and Strength Evolution Related to Fracturing and Healing Episodic Processes (Years to Millennia): The Role of Pressure Solution. Oil & Gas Science and Technology–Rev. IFP Energies nouvelles, 2011.
    15. Gratier J, Gueydan F, Deformation in the Presence of Fluids and Mineral Reactions: Effect of Fracturing and Fluid-Rocks Interaction On Seismic Cycle. In: Tectonic Faults: Agent of Change on a Dynamic Earth, Handy M R, Hirth G, Hovius N (eds), Cambridge, The MIT Press: 319-356
    16. Green H W, Borch R S, A New Molten Salt Cell for Precision Stress Measurement at High Pressures. European Journal of Mineralogy, 1989, 1(2): 213.
    17. Gueydan F, Leroy Y M, Jolivet L et al., Analysis of Continental Midcrustal Strain Localization Induced by Microfracturing and Reaction-Softening. Journal of Geophysical Research, 2003, 108(B2): 2064.
    18. Han R, Shimamoto T, Hirose T et al., Ultralow Friction of Carbonate Faults Caused by Thermal Decomposition. Science, 2007, 316(5826): 878.
    19. Handy M R, Stünitz H, Strain Localization by Fracturing and Reaction Weakening - a Mechanism for Initiating Exhumation of Subcontinental Mantle Beneath Rifted Margins. Geological Society, London, Special Publications, 2002, 200(1): 387.
    20. Hashimoto Y, Ujiie K, Sakaguchi A et al., Characteristics and Implication of Clay Minerals in the Northern and Southern Parts of the Chelung-pu Fault, Taiwan. Tectonophysics, 2007, 443(3-4): 233-242.
    21. Hirth G, Tullis J, Dislocation Creep Regimes in Quartz Aggregates. Journal of Structural Geology, 1992, 14(2): 145-159.
    22. Holyoke III C W, Kronenberg A K, Accurate Differential Stress Measurement Using the Molten Salt Cell and Solid Salt Assemblies in the Griggs Apparatus with Applications to Strength, Piezometers and Rheology. Tectonophysics, 2010.
    23. Ingrin J, Doukhan J C, A Griggs Deformation Apparatus Set Up at Lille. Terra Nova, 1991, 3(6): 603-606.
    24. Ito Y, Nakashima S, Water Distribution in Low-Grade Siliceous Metamorphic Rocks by Micro-FTIR and its Relation to Grain Size: A Case from the Kanto Mountain Region, Japan. Chemical Geology, 2002, 189(1-2): 1-18.
    25. Jamtveit B, Austrheim H, Metamorphism: The Role of Fluids. Elements, 2010, 6(3): 153-158.
    26. Kolb J, The Role of Fluids in Partitioning Brittle Deformation and Ductile Creep in Auriferous Shear Zones Between 500 and 700°C. Tectonophysics, 2008, 446(1-4): 1-15.
    27. Lachenbruch A H, Sass J H, Heat Flow from Cajon Pass, Fault Strength, and Tectonic Implications. Journal of Geophysical Research, 1992, 97(B4): 4995-5015.
    28. Li Y G, Vidale J E, Day S M et al., Postseismic Fault Healing On the Rupture Zone of the 1999 M 7.1 Hector Mine, California, Earthquake. Bulletin of the Seismological Society of America, 2003, 93(2): 854.
    29. Liechti R, Zoback M D, Preliminary Analysis of Clay Gouge from a Well in the San Andreas Fault Zone in Central California. US Geological Survey. 1979.
    30. Lin A, Maruyama T, Kobayashi K, Tectonic Implications of Damage Zone-Related Fault-Fracture Networks Revealed in Drill Core through the Nojima Fault, Japan. Tectonophysics, 2007, 443(3-4): 161-173.
    31. Lockner D A, Morrow C, Moore D et al., Low Strength of Deep San Andreas Fault Gouge from SAFOD Core. Nature, 2011.
    32. Logan J M, Higgs N G, Friedman M, Laboratory Studies on Natural Gouge from the US Geological Survey Dry Lake Valley No. 1 well, San Andreas Fault Zone. Mechanical Behavior of Crustal Rocks: the Handin Volume, 1981, 24: 121.
    33. Magee M E, Zoback M D, Evidence for a Weak Interplate Thrust Fault Along the Northern Japan Subduction Zone and Implications for the Mechanics of Thrust Faulting and Fluid Expulsion. Geology, 1993, 21(9): 809.
    34. Mccaig A M, Deep Fluid Circulation in Fault Zones. Geology, 1988, 16(10): 867.
    35. Moore D E, Rymer M J, Talc-Bearing Serpentinite and the Creeping Section of the San Andreas Fault. Nature, 2007, 448(7155): 795-797.
    36. Nüchter J A, St Ckhert B, Vein Quartz Microfabrics Indicating Progressive Evolution of Fractures into Cavities During Postseismic Creep in the Middle Crust. Journal of Structural Geology, 2007, 29(9): 1445-1462.
    37. O'Kane A, The Role of Water in Grain-Scale Deformation within the Cove Fault Zone, South Central Pennsylvania. Bowling Green: Bowling Green State University, MSC-Thesis, 2005.
    38. Post A, Tullis J, A Recrystallized Grain Size Piezometer for Experimentally Deformed Feldspar Aggregates. Tectonophysics, 1999, 303(1-4): 159-173.
    39. Rybacki E, Renner J, Konrad K et al., A Servohydraulically-Controlled Deformation Apparatus for Rock Deformation Under Conditions of Ultra-High Pressure Metamorphism. Pure and Applied Geophysics, 1998, 152(3): 579-606.
    40. Sibson R H, Earthquakes and Rock Deformation in Crustal Fault Zones. Annual Review of Earth and Planetary Sciences, 1986, 14: 149.
    41. Simpson C, Deformation of Granitic Rocks across the Brittle-Ductile Transition. Journal of Structural Geology, 1985, 7(5): 503-511.
    42. Smithson S B, Wenzel F, Ganchin Y V et al., Seismic Results at Kola and KTB Deep Scientific Boreholes: Velocities, Reflections, Fluids, and Crustal Composition. Tectonophysics, 2000, 329(1-4): 301-317.
    43. Stipp M, Tullis J, The Recrystallized Grain Size Piezometer for Quartz. Geophysical Research Letters, 2003, 30(21): 2088.
    44. Tanaka H, Uehara N, Itaya T, Timing of the Cataclastic Deformation Along the Akaishi Tectonic Line, Central Japan. Contributions to Mineralogy and Petrology, 1995, 120(2): 150-158.
    45. Tingle T N, Green H W, Young T E et al., Improvements to Griggs-Type Apparatus for Mechanical Testing at High Pressures and Temperatures. Pure and Applied Geophysics, 1993, 141(2): 523-543.
    46. Toro G D, Goldsby D L, Tullis T E, Friction Falls Towards Zero in Quartz Rock as Slip Velocity Approaches Seismic Rates. Nature, 2004, 427(6973): 436-439.
    47. Trepmann C A, Microstructural Criteria for Synseismic Loading and Postseismic Creep in the Uppermost Plastosphere: An Example From the Sesia Zone, Western Alps. 2002.
    48. Trepmann C A, St Ckhert B, Cataclastic Deformation of Garnet: A Record of Synseismic Loading and Postseismic Creep. Journal of Structural Geology, 2002, 24(11): 1845-1856.
    49. Trepmann C A, St Ckhert B, Dorner D et al., Simulating Coseismic Deformation of Quartz in the Middle Crust and Fabric Evolution During Postseismic Stress Relaxation - An Experimental Study. Tectonophysics, 2007, 442(1-4): 83-104.
    50. Tullis T E, Tullis J, Experimental Rock Deformation Techniques. Mineral and Rock Deformation: Laboratory Studies, 1986: 297-324.
    51. Virgo S, Arndt M, Evolution of a Crack-Seal Calcite Vein Network in Limestone: A High Resolution Structural, Microstructural and Geochemical Study from the Jebel Akhdar High Pressure Cell, Oman Mountains. Aachen: RWTH Aachen University, MSC-Thesis, 2010.
    52. Vrolijk P, van der Pluijm B A, Clay Gouge. Journal of Structural Geology, 1999, 21(8-9): 1039-1048.
    53. Whitmeyer S J, Wintsch R P, Reaction Localization and Softening of Texturally Hardened Mylonites in a Reactivated Fault Zone, Central Argentina. Journal of Metamorphic Geology, 2005, 23(6): 411-424.
    54. Wintsch R P, Christoffersen R, Kronenberg A K, Fluid-Rock Reaction Weakening of Fault Zones. Journal of Geophysical Research, 1995, 100(B7): 13013-13021.
    55. Wintsch R P, Knipe R J, Growth of a Zoned Plagioclase Porphyroblast in a Mylonite. Geology, 1983, 11(6): 360.
    56. Xia Q K, Yang X Z, Deloule E et al., Water in the Lower Crustal Granulite Xenoliths From Nushan, Eastern China. Journal of Geophysical Research, 2006, 111(B11): B11202.
    57. Yonkee W A, Parry W T, Bruhn R L, Relations Between Progressive Deformation and Fluid-Rock Interaction During Shear-Zone Growth in a Basement-Cored Thrust Sheet, Sevier Orogenic Belt, Utah. American Journal of Science, 2003, 303(1): 1.
    58. Zhang S, Paterson M S, Cox S F, Microcrack Growth and Healing in Deformed Calcite Aggregates. Tectonophysics, 2001, 335(1-2): 17-36.
    59. Zhou Y S, He C R, Song J et al., An Experiment Study of Quartz-Coesite Transition at Differential Stress. Chinese Science Bulletin, 2005, 50(5): 446-451.
    60. Zhou Y S, Jiang H K, He C R, Experiments of Brittle-Plastic Transition and Instability Modes of Juyongguan Granite at Different Temperatures and Pressures. Earthquake Research in China, 2003, 17(2).
    61.党嘉祥,周永胜,陈建业等, 5.12汶川地震基岩同震断层泥结构与成分特征.第四届构造地质与地球动力学学术研讨会,南京大学: 2011a.
    62.党嘉祥,周永胜,陈建业等,汶川地震地表破裂带北段基岩同震断层泥的矿物成分特征.岩石学报, 2011b: in press.
    63.党嘉祥,周永胜,何昌荣,活塞-圆桶式固体介质高温高压实验容器的压力标定方法.地震地质, 2007, 29(001): 133-143.
    64.韩亮,周永胜,陈建业等,汶川地震基岩同震断层泥结构特征.第四纪研究, 2010, 30(4).
    65.韩亮,周永胜,党嘉祥等, 3GPa熔融盐固体介质高温高压三轴压力容器的温度标定.高压物理学报, 2009, 23(6).
    66.韩亮,周永胜,何昌荣,汶川地震断层带的深部流体特征.第四届构造地质与地球动力学学术研讨会,南京大学: 2011.
    67.韩亮,周永胜,何昌荣等, 3GPa熔融盐固体介质高温高压三轴压力容器的围压标定. 2011.
    68.靖晨,龙门山韧性剪切带主要矿物结构水含量与变形的关系.北京:中国地震局地质研究所,硕士, 2010.
    69.靖晨,周永胜,兰彩云,龙门山韧性剪切带主要矿物结构水含量与变形的关系.岩石学报, 2010, 26(5): 13.
    70.雷建设,赵大鹏,苏金蓉等,龙门山断裂带地壳精细结构与汶川地震发震机理.地球物理学报, 2009, 52(2): 339-345.
    71.刘俊来,马立杰,崔迎春等,上地壳环境中的流体作用与灰岩的脆-韧性转变.地学前缘, 2001, 8(3): 171-176.
    72.刘鹏,童叶翔,杨绮琴,熔盐体系及有关应用的新进展.电化学, 2007, 13(004): 351-359.
    73.刘启元,陈九辉,李顺成等,汶川Ms8.0地震:川西流动地震台阵观测数据的初步分析.地震地质, 2008, 30(3): 584-596.
    74.王国芝,刘树根,徐国盛等,龙门山中段推覆体内流体包裹体特征.成都理工学院学报, 2002, 29(4): 5.
    75.徐锡伟,闻学泽,叶建青等,汶川Ms8.0地震地表破裂带及其发震构造.地震地质, 2008, 30(003): 597-629.
    76.薛钧月,龙门山构造带中-北段构造流体地球化学特征及其与成藏关系的探讨.成都:成都理工大学,硕士, 2009.
    77.杨晓松,马瑾,张先进,大陆壳内低速层成因综述.地质科技情报, 2003, 22(2): 7.
    78.张培震,徐锡伟,闻学泽, 2008年汶川8.0级地震发震断裂的滑动速率,复发周期和构造成因.地球物理学报, 2008, 51(4): 1066-1073.
    79.张荣华,胡书敏,研究地球深部流体上升到中地壳的科学问题.中国地球物理学会第20届年会,西安: 2004.
    80.张荣华,胡书敏,张雪彤,中地壳的地球化学动力学和矿石成因.地球学报, 2006(005): 460-470.
    81.张荣华,张雪彤,胡书敏等,中地壳温度压力条件下的水-岩作用化学动力学实验.岩石学报, 2007, 23(11).
    82.周永胜,汶川地震发育高角度逆断层滑动的力学条件研究. 2010.
    83.周永胜,何昌荣,华北地区壳内低速层与地壳流变的关系及其对强震孕育的影响.地震地质, 2002, 24(1): 9.
    84.周永胜,何昌荣,汶川地震区的流变结构与发震高角度逆断层滑动的力学条件.地球物理学报, 2009, 52(2): 474-484.
    85.周永胜,何昌荣,杨晓松,中地壳韧性剪切带中的水与变形机制.中国科学D辑, 2008, 38(7): 819-832.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700