用户名: 密码: 验证码:
激光对铯原子磁力仪灵敏度影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微弱磁场精确探测技术在许多方面,如医学、军事、地球物理和工业中,都有着不可替代的重要作用。提高磁力仪的灵敏度成为了自上个世纪50年代以来科研工作者直努力的方向。60年代,人们以约瑟夫森效应为理论基础利用超导材料制成了超导量子磁力仪,其测量灵敏度极高,可以达到10-15T·Hz-1/2,但其不足也非常明显,要求在液氮的低温环境下才能工作。用Cs原子作为工作物质,在100℃左右的温度下就可以实现无自旋交换弛豫(Self-Exchange Relaxation-Free, SERF)原子磁力仪。
     本论文用唯像理论分析了在SERF-Cs原子磁力仪中,原子横向弛豫及线宽与缓冲气体He的压强及Cs泡温度之间的变化曲线。通过对曲线进行分析,给出了实现SERF-Cs原子磁力仪最佳工作参数,即在Cs泡温度为105℃,缓冲气体He的压强为600Torr的条件下,SERF-Cs原子磁力仪谱线的极限宽度为24.2Hz。由于SERF-Cs原子磁力仪是利用已被极化的电子自旋来测量弱磁场,因此泵浦和检测强度制约着其测量灵敏度。这样就需要寻找到最佳泵浦光光强和检测光光强,通过数值计算得出泵浦光强和检测光光强分别为52mW/cm2和0.6mW/cm2。我们还分析了自旋投影噪声、光子散粒噪声、光频移对SERF-Cs原子磁力仪灵敏度影响程度。对这三种噪声与激光频率失谐关系进行了数值计算,得出自旋投影噪声大约为1.23fT·Hz-1/2;光子散粒噪声大约为1.0fT·Hz-1/2;光频移大约为0.12fT·Hz-1/2;其总噪声大约在1.6fT·Hz-1/2。这些研究工作为我们进行SERF-Cs原子磁力仪的实验研究提供了必要的理论依据。
     本论文共分五部分:第一章介绍SERF-Cs原子磁力仪研究的背景和国内外研究现状。第二章介绍了SERF-Cs原子磁力仪的物理基础和基本工作原理。第三章对SERF-Cs原子磁力仪共振谱线宽度进行了数值计算,论证了最佳泵浦光功率和最佳检测光功率。第四章从理论方面探讨了制约SERF-Cs原子磁力仪灵敏度的因素,提出了研制高灵敏度SERF-Cs原子磁力仪的目标。第五章对研究工作进行总结,展望了高灵敏度Cs原子磁力仪广阔的应用前景。
The accurate detecting technology of weak magnetic field plays an irreplaceable role in many fields such as medicine, military, geophysics and industry. Researchers have kept improving the sensitivity of magnetometer since 1950s. In 1960s, based on Josephson Effect theory, superconducting materials were used to produce the superconducting quantum magnetometer, whose sensitivity was up to 10-15T·Hz-1/2. However, its deficiency is also very obvious. It requires the rigorous working condition of low-temperature environment in liquid nitrogen. Then, scientists found that the spin-exchange relaxation-free (SERF) magnetometer could be implemented using Cs vapor as the working substance in the working condition of about 100℃.
     This thesis analyze the spin-exchange relaxation-free magnetometer with Cs vapor based on the phenomenological theory, and show the change curves of atom transverse relaxation and line width going with pressure of buffer gas He and temperature of Cs cell. Then, according to analyze the curves, optimal working parameters of the Cs atom SERF magnetometer are given. When the temperature of Cs cell is about 105℃and the pressure of buffer gas He is 600 Torr, the maximum breadth of spectrum line of the spin-exchange relaxation-free magnetometer with Cs vapor is about 24.2 Hz. Because the Cs atom spin-exchange relaxation-free uses the polarized electron spin to detect week magnetic field, pump and probe intensities limit its sensitivity. Therefore, it is need to find out the best pump and probe intensities. From the results of numerical calculation, they are 52mW/cm2 and 0.6mW/cm2, respectively. At the same time, this work also analyze the factors effecting sensitivity of spin-exchange relaxation-free magnetometer with Cs vapor including spin projection noise, photon shot noise and optical frequency shift. The relation of three noises and laser frequency detuning has been calculated. The results show that the spin projection noise is about 1.23fT·Hz-1/2, the photon shot noise is about 1.0fT·Hz-1/2, the optical frequency shift is about 0.12fT·Hz-1/2 and the total noise is about 1.6fT·Hz-1/2. This research has provided the necessary theoretical basis for the following experimental study on the spin-exchange relaxation-free magnetometer with Cs vapor.
     This thesis is divided into five parts. The first chapter introduces the research background and research status internationally and domestically of the Cs atom spin-exchange relaxation-free magnetometer. The second chapter describes the physical fundamentals and the basic working principles of the spin-exchange relaxation-free magnetometer with Cs vapor. The third chapter gives the numerical calculation results of the resonance spectral line width of the spin-exchange relaxation-free magnetometer with Cs vapor and discusses the best pump optical power and the best detection optical power. The fourth chapter theoretically discusses the factors effecting sensitivity of the spin-exchange relaxation-free magnetometer with Cs vapor, and puts forward the research target of the Cs atom spin-exchange relaxation-free magnetometer with high sensitivity. The fifth chapter summarizes the research work and looks forward to broad application prospects of the Cs atom magnetometer with high sensitivity.
引文
[1]Budker D. A new spin on magnetometry [J]. Nature.2003,422.
    [2]H rvoic D. SeaSPY overhauser magnetometer Technical app lication guide[OL].
    [3]张昌达.量子磁力仪研究和开发近况[J].物探与化探.2005,29(4):284-285.
    [4]J.C.Allred, R.N.Lyman, T.W.Kornack and M.V.Romalis.High-Sensitivity Atomic Magnetometer Unaffected by Spin-Exchange Relaxation [J]. Phys. Rev. Lett.2002,23 130801.
    [5]I.K.Kominis, T.W.Kornack, J.C.Allred. A Subfemtotesla Multichannel Atomic Magnertometer[J]. Nature 422 596-599 2003.
    [6]Dmitry Budker.A new spin on magnetometry[J].Nature,2003,422(6932):574-575.
    [7]S.J.Seltzer,M.V.Romalis.Unshielded three-axis vector operation of a spin-exchange relaxation-free atomic magnetometer[J].Applied Physics Letters,2004,85(20):4804 4806.
    [8]张昌达,董浩斌.量子磁力仪评说[J].工程地球物理学报.2004,1(6):505-506.
    [9]Weinstock H. SQUD Sensor:Fundamental[M], Fabrication and Application Kluwer Academic,Press,1996.
    [10]W.Happer and H.Tang.Spin-Exchange Shift and Narrowing of Magnetic Resonance Lines in Optically Pumped Alkali Vapors [J].Phys. Rev. Lett.1973,31,273-276.
    [11]M.P.Ledbetter, I.M.Savukov, M.V.Acosta, et al.Spin-Exchange Relaxation Free Magnetrometry with Cs Vapor[J]. Phys. Rev.A.2008:77 033408.
    [12]V.Shah, S.Knappe, P.D.D.Schwindt,et al. Subpicotesla Atomic Magnetometry with a Microfabricated Vapor Cell[J].Nature Photonics,2007:1649-652.
    [13]D.D.Schwindt Peter, Lindseth Brad, Knappe Svenja, et al. Chip-Scale Atomic Magnetometer with Improved Sensitivity by Use of the Mx Technique[J]. Appl. Phys. Lett.2007,90 081102.
    [14]RS-YGB6A型海洋氦光泵磁探仪[OL]http://www.hzrs.com.cn/pro.asp?id=16.
    [15]何志伟.基于MSP430的质子旋进磁力仪设计[D].吉林大学硕士学位论文.2007:23-25.
    [16]P.G.Killeen Exploration Trends & Development in 2008 [J].Supplement to the Northern Miner,2009,95(1).
    [17]张昌达.德国地球科学卫星CHAMP上的一种磁力仪一欧弗豪泽效应质子磁力仪[A].张永刚,孙延军,李庆红,张卫国第二届海洋强国战略论坛一军事海洋与技术论文集[C].中国海洋学会,青岛,2003.
    [18]刘浩军.中国国土资源航空物探遥感中心研制的新一代航空氦光泵磁力仪(HC-2000型)主要性能指标居国际领先水平.国土资源遥感.2003,01:69
    [19]司风雷.铯光泵谱灯激励与弱磁检测电路的设计和实现[D].武汉理工大学硕士学位论文.2010:10-21.
    [20]李曙光,周翔,曹晓超,盛继腾,徐云飞,王兆英,林强.全光学高灵敏度伽原子磁力仪的研究.物理学报.2010,59(2):878-879.
    [21]董浩斌,张昌达.量子磁力仪再评说[J].工程地球物理学报.2010,7(4):461-462.
    [22]P. D. D. Schwindt, et al., "Chip-scale atomic magnetometer," Appl.Phys. Lett., vol.85, pages 6409-6411,2004.
    [23]W. C. Griffith, R. Jimenez-Martinez, S. Knappe, J. Kitching, and V.Shah, "Miniature atomic magnetometer integrated with fluxconcentrators," Appl. Phys. Lett., vol.94, pages 023502,2009.
    [24]S.J.Seltzer Developments in Alkali-Metal Atomic Magnetometry [D]. Dissertation: Princeton Uni-versity,2008.
    [25]张昌达.航空磁力梯度张量测量--航空磁测技术的最新进展.工程地球物理学报[J].2006,3(5):355-356.
    [26]K.Kitching, S.Knappe, W.Clark Griffith W C,et al.Uncooled, Millimeter-Scale Atomic Magnetometerswith Femtotesla Sensitivity[C]. IEEE Sensors 2009Conference,2009. 1844-1847.
    [27]J.Kitching, S.Knappe, V.Shah, et al, Microfabri-cated Atomic Magnetometers and Applications [EB/OL],2008.
    [28]Cesium D Line Data,http://steck.us/alkalidata/,(Version 2.1.3, August,2009)
    [29]李乾勇.铯原子D2线光抽运光谱及其应用研究[D].山西大学硕士学位论文.2010
    [30]杨福家.原子物理学(第三版)[M].北京:高等教育出版社,2000
    [31]Walker, T.G.and Happer, W. (1997). Spin-exchange optical pumping of noble-gas nuclei. Reviews of Modern Physics,69(2):629-642.
    [32]Corney, A. (1977). Atomic and Laser Spectroscopy. Oxford:Clarendon Press, New York.
    [33]I.M. Savukov and M.V. Romalis, Phys. Rev. A,71,023405 (2005).
    [34]A Test of CPT and Lorentz Symmetry Using a K-3He Co-magnetometer
    [35]Franz, F. A. and Volk, C. (1982). Electronic spin relaxation of the 42S1/2 state of K induced by K-He and K-Ne collisions. Physical Review A,26(1):85-92.
    [36]F.A.Franz and C.E.Sooriamoorthi Spin Relaxation within the 62P1/2 and 62S1/2 States of Cesium Measured by White-Light Optical Pumping Phys. Rev. A 10 126-140 1974.
    [37]倪光炯.高等量子力学[M].上海:复旦大学出版社.2004
    [38]邓文基,许运华,刘平.测不准关系和最小不确定态[J].物理报.2003,52(12):2962-2963
    [39]W. A. Gardner (1990). Introduction to Random Processes. McGraw-Hill.
    [40]M. Koschorreck,M. Napolitano,B-Dubost,and M. W. Mitchell. Measurement of Spin Projection Noise in Broadband Atomic Magnetometry http://arxiv.org/abs/0911.4491.
    [41]刘强,曾宪金,张军海,孙伟民,张建中.法拉第调制技术在微小旋转角检测中的应用[J].光学与光电技术.2009 7(6):66-67.
    [42]A. Angelopoulos et al. (1998). First direct observation of time-reversal noninvariance in the neutral-kaon system. Physics Letters B 444 (1-2):43-51.
    [43]李春梅.散粒噪声分析方法及软件研究[D].西安电子科技大学硕士学位论文.2009:3-20
    [44]Appelt, S.Baranga, A.B.A.Erickson, C. J.Romalis, M. V.Young and W.Happer. Theory of spin-exchange optical pumping of 3He and 129Xe.Physical Review A, 1998,58(2):1412-1439.
    [45]Happer,W. and Mathur, B. S. (1967). Effective operator formalism in optical pumping. Physical Review,163(1):12-25.
    [46]王义遒.量子频标原理[M].北京:科学出版社.1986.
    [47]曾谨言.量子力学[M].北京:科学出版社.2007.
    [48]邢爱堂,董太乾,黄湘友.用相位分析法计算交流Stark效应中探测场的谱线响应.量子光学学报.1999,24(3):100-101.
    [49]邢爱堂,董太乾,黄湘友.用相位分析方法计算交流Stark效应.量子光学学报,1998,4(2):99-103.
    [50]陈景标,杨东海.小型光抽运铯束频标在不同抽运-检测机制下的光频移.计量学报1998,19(2):95-96.
    [51]张军海,王凤芝,王义遒,杨东海.光抽运小铯束频率标准中光频移的测量.宇航计测技术.2004,24(1):27-28.
    [52]林贻望,宫蒂,黎耀.光泵远红外激光中的偏频泵交流斯塔克效应.光学学报.1986,6(8):689-690.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700