用户名: 密码: 验证码:
强地震动随机合成中震源谱模型的改进
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
强地震动是地震中建筑物破坏、倒塌的主要原因。近场地震动的研究涉及对震源的了解和认识、地震波在介质中的传播、局部场地条件的影响三个方面等一系列基本科学问题,其中震源的影响最为显著。目前的共识是高频地震动的模拟要借助随机合成的方法。本文以基于有限断层的混合震源模型为基础,研究了随机合成方法中震源谱模型的改进。
     先是全面介绍了Masuda震源谱模型的一个改进,每个子源的拐角频率由根据相应错动量分配得到的地震矩确定,表达地震破裂面上错动量不均匀分布对地震动频谱特征的影响,尤其突出凹凸体对高频地震波的控制作用;同时表达破裂过程中辐射的地震波频率成分的变化,随着破裂的扩展、破裂的子源数目逐渐增加,调整震源谱的两个参数。这样的改进,相当于加拿大学者调整拐角频率的效果,使合成的地震动幅值不再依赖子源的尺寸,同时避免了加拿大学者以前的改进中拐角频率与子源错动量无关,后破裂的子源总会比先破裂子源具有更低的拐角频率,最后破裂子源的拐角频率达到最低值的不合理之处。
     文中,进一步研究了这一改进对远场辐射能的影响,指出远场辐射能曲线随子源尺寸不同形状有变化是合理的,子源增大应该造成高频辐射能略有减少、低频辐射能略有增加,没有必要追求辐射能曲线形状的一致,关键在总辐射能是否保持守恒。参考加拿大学者的思路,研究了在震源谱模型中增加标准化因子的作法,以补偿震源谱参数随破裂面扩展调整引起的部分能量损失。以相同错动量的未调整的震源谱辐射能与调整后的震源谱辐射能相等为基础,推导了标准化因子的计算公式。
     本文通过1994年美国北岭6.7级地震的实际例子,选用已有的北岭地震的震源模型和区域参数,采用1km×1km、2km×2km和4km×4km三个子源尺寸,计算了24个近场基岩台站的地震动。检验合成的地震动对于子源尺寸的依赖性,进一步比较合成地震动与实际地震记录的符合程度。然后计算了远场某点的速度谱的平方来表征远场辐射能,考察远场辐射能量是不是随子源的尺寸的不同有明显的变化。
     通过计算结果的对比,说明了震源谱的改进模型对改善合成的地震动对子源尺寸依赖性的效果不错,跟实际地震记录的比较吻合。增加标准化因子后,远场总辐射能随子源尺寸的变化明显减小,对合成的地震动幅值与子源尺寸依赖性的改善没有明显影响,对合成的地震动幅值与实际记录的符合程度不但没有负面影响,还有所改善。
Strong ground motions are the main cause of damage and collapse of buildings. The research of near-field ground motions involves series of fundamental scientific problems in seismology including the knowledge and understanding of the source, seismic wave propagation in the medium, the impact of local site conditions. The impact of source is emphasis in these three aspects. Current consensus is that the stochastic synthesis method is the main approach for the high frequency ground motions simulation. Based on hybrid source model of finite fault, this paper researches one improvement for source spectral model in stochastic synthesis.
     This paper first introduces the improvement of the Masuda source spectra, and the corner frequency of sub-source is determined by its seismic moment assigned as the distribution of slip. This model can characterize the influence of heterogeneous distribution of slip to frequency spectrum characteristics, especially the barrier’s dominant role in high frequency seismic wave. Meanwhile, it can express the variation of frequency component of seismic wave during rupture process. As rupture continues, the number of cracked sub-sources increases and two parameters in source spectra model is also changed. This improvement is equal to the effect of modified corner frequency of each sub-source proposed by Canadian scholars, which can eliminate the seismic amplitude’s dependence on the dimensions of sub-sources. However, there is the little relationship between corner frequency and the slip of sub-sources in Canadian scholars’evolutionary model, and the latter cracked sub-sources always have lower corner frequency than former sub-sources so as to the last cracked sub-source achieves the lowest corner frequency on the whole fault plane. Our improvement can avoid these unreasonable situations above.
     This paper further makes researches on influence of our improvement to far-field radiation energy and indicates that the variation of the shape of far-field radiation energy curve under different sub-source sizes is also reasonable. That is to say, as the dimensions of sub-sources increase, the high frequency components part in radiation energy decreases while the low frequency components part increases. Thus there is no need to pursue the exact agreement of shape of radiation energy curve under different dimensions of sub-sources. The key is idea, this paper adds a frequency-independent scaling factor in source spectra formula in order to compensate the energy loss due to variations of the two parameters in rupture process. Based on the equation of radiation energy between unmodified source spectra model and modified one, the formula of the scaling factor can be deduced.
     1994 Northridge earthquake in the United States is taken as an example to test our improvement. This paper adopt pre-existing source parameters and regional parameters and three different dimensions of sub-sources, 1km×1km、2km×2km and 4km×4km, to compute ground motions at 24 stations on rock sites. This can be used to testify synthesis result’s dependence on sub-sources, and accordance between synthetic ground motion and seismic recordings. We also calculate the far-field radiate energy curve, and testify whether or not radiation energy varies as sub-sources change.
     By comparison, this improved source spectra model can ameliorate synthetic ground motions’dependence on dimensions of sub-sources. After adding the scaling factor, the variation of far-field radiate energy under different dimensions of sub-sources decreases. Meanwhile, adding the scaling factor makes no difference to synthetic ground motions’dependence on dimensions of sub-sources. In conclusions, there is no harm but improvement for the accordance between synthetic ground motions and seismic recordings after adding scaling factor.
引文
[1]陶夏新,李小军.工程地震基本科学问题-学科发展战略研究报告(2006年~2010年).国家自然科学基金委员会工程与材料科学部.北京:科学出版社,建筑、环境与土木工程II(土木工程卷). 2006: 367~381
    [2] T. C. Hanks and R. K. McGuire. The character of high frequency strong ground motion[J]. Bulletin of the Seismological Society of America, 1981, 71, 2071- 2095.
    [3] H. Y. Wang, L. L. Xie, X. X. Tao, J. Li. Prediction of near-field strong ground motions for scenario earthquakes on active fault [J].Earthquake Engineering and Engineering Vibration, 2006, (01):11-17.
    [4]张冬丽;陶夏新;周正华;近场强地震动数值模拟的简化计算方法[J].地震地质,2006,(04):612-622.
    [5] K. Irikura. Prediction of strong motions from future earthquakes caused by active faults-case of the Osaka basin[C]. Proc. of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand. 2000
    [6] D. M. Boore. Comparisons of Ground Motions from the 1999 Chi-Chi Earthquake with Empirical Predictions Largely Based on Data from California[J]. Bulletin of the Seismological Society of America, Oct 2001; 91: 1212 - 1217.
    [7] D. M. Boore. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra[J]. Bulletin of the Seismological Society of America, 1983, 73:6, 1865-1894
    [8] S. H. Harzell and T. H. Heaton.. Inversion of strong ground motion and teleseismic waveform data for the fault rupture history of the 1879 Imperial Valley, California, earthquake[J]. Bulletin of the Seismological Society of America, 1983, 73, 1553-1583
    [9] X. X. Tao, H. Y. Wang. A Random Source Model for Near Filed Strong Ground Motion Prediction[C]. Proceeding of the 13th World Conference on Earthquake Engineering. Vancouver. 2004: pp1945
    [10]王海云.近场强地震动预测的有限断层震源模型[D].中国地震局工程力学研究所博士论文. 2004
    [11] X. X. Tao, J. G. Anderson. Near Field Strong Ground Motion Simulation.Proceedings of the International Conference on Advances and New Challenges in Earthquake Engineering Research[C]. Harbin. 2002: 79~86
    [12] W. B. Joyner and D. M. Boore. On simulating large earthquakes by Green’s function addition of smaller earthquakes[J]. American Geophysical Monograph, 1986, 37, 269–274
    [13]张冬丽.基于数值格林函数方法的近场长周期强地震动模拟[D].中国地震局工程力学研究所博士论文. 2005
    [14]孙晓丹,陶夏新,王国新,刘陶钧.地震动随机合成中与震源谱相关的动力学拐角频率[J].地震学报, 31(5):537-543
    [15] X. X. Tao. X. D. Sun, H. M. Liu, and P. Li. Some issues on forecast of strong ground motion field[C]. Proc. of the 7th International Conference on Earthquake Resistant Engineering Structures, 2009, Cyprus
    [16] Igor A. Beresnev and Gail M. Atkinson. FINSIM---a FORTRAN Program for Simulating Stochastic Acceleration Time Histories from Finite Faults[J]. Seismological Research Letters. Volume 69, Number1, 1998, 27-32
    [17] D. Motazedian, G. M. Atkinson. Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency[J]. Bulletin of the Seismological Society of America. 2005, 95(3): 995~1010
    [18] Y. Zeng, J.G. Anderson, and G. Yu. A composite source model for computing realistic strong ground motions[J]. Geophys. Res. Lett., 1994, 21,725-728.
    [19] D. M. Boore, W. B. Joyner and L. Wennerberg. Fitting the stochasticω?2 source model to observed response spectra in western north America: Trade-offs betweenΔσandκ[J]. Bulletin of the Seismological Society of America, Aug 1992; 82: 1956 - 1963.
    [20] T. C. Hanks, R. K. Mcguire. The Character of High-Frequency Strong Ground Motion[J]. Bulletin of the Seismological Society of America. 1981, 71(6): 2071~2095
    [21] A. Beresnev, G. M. Atkinson. Modeling Finite-Fault Radiation from theωn Spectrum[J]. Bulletin of the Seismological Society of America. 1997, 87(1): 67~84
    [22] G. Atkinson, W. Silva. Stochastic Modeling of California Ground Motions[J]. Bulletin of the Seismological Society of America. 2000, 90(2): 255~274
    [23] S. Z. Chen and G. M. Atkinson. Global Comparisons of Earthquake Source Spectra[J]. Bulletin of the Seismological Society of America, Apr 2002; 92: 885 - 895.
    [24] A. Frankel, C. Mueller, T. Barnhard, D. Perkins, E. Leyendecker, N. Dickman, S. Hanson, and M. Hopper. National Seismic Hazard Maps: Documentation June 1996. U.S. Geol. Surv. Open-File Rept. 96-532, 69 pp.
    [25] G. M. Atkinson and D. M. Boore. Ground Motion Relations for Eastern North America[J]. Bulletin of the Seismological Society of America. 85, 17–30.
    [26] V. F. Cormier. The Effect of Attenuation on Seismic Body Waves[J]. Bulletin of the Seismological Society of America. 72, S169–S200.
    [27] D. M. Boore. Simulation of Ground Motion Using the Stochastic Method[J]. Pure and Applied Geophysics. 2003, 160: 635~676
    [28] D. M. Boore and W. B. Joyner. Site amplifications for generic rock sites[J]. Bulletin of the Seismological Society of America. Apr 1997; 87: 327 - 341
    [29] M. D. Purvance and J. G. Anderson. A Comprehensive Study of the Observed Spectral Decay in Strong-Motion Accelerations Recorded in Guerrero, Mexico[J]. Bulletin of the Seismological Society of America, Apr 2003; 93: 600 - 611.
    [30]孙晓丹.强地震动场估计中若干问题的研究[D].哈尔滨工业大学博士论文. 2010.
    [31] J. N. Brune. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes[J]. J. Geophys. Res. 75, 4997–5009.
    [32] D. M. Boore and J. Boatwright. Average Body-wave Radiation Coffcients[J]. Bull. Seismol. Soc.Am. 74, 1615–1621.
    [33] D. M. Boore, K. W. Campbell, and G. M. Atkinson. Determination of Stress Parameters for Eight Well-Recorded Earthquakes in Eastern North America[J]. Bulletin of the Seismological Society of America, Aug 2010; 100: 1632 - 1645.
    [34] J. Boatwright, and G. Choy. Acceleration Source Spectra Anticipated for Large Earthquakes in Northeastern North America[J]. Bull. Seismol Soc. Am. 82, 660–682.
    [35] R. Haddon. Earthquake Source Spectra in Eastern North America[J]. Bull. Seismol. Soc. Am. 86,1300–1313.
    [36] W. B. Joyner. Ground Motion Estimates for the Northeastern U.S. or Southeastern Canada[C]. In Recommendations for Probabilistic Seismic Hazard Analysis: Guidance on Uncertainty and Use of Experts, Senior Seismic Hazard Analysis Committee, U.S. Nuclear Reg. Comm. Rept.NUREG/CR-6372, 1997, Washington, D.C.
    [37] D. M. Boore. Stochastic Simulation of High-Frequency Ground Motions Based On Seismological Models of the Radiated Spectra[J]. Bulletin of the Seismological Society of America. 1983, 73(6A): 1865~1894
    [38] J. Boatwright, G. L. Choy. Acceleration Source Spectra Anticipated For Large Earthquakes In Northeastern North America[J]. Bulletin of the Seismological Society of America. 1992, 82(2): 660~682
    [39] S. E. Hough, D. S. Dreger. Source Parameters of the 4/23/92 M6.1 Joshua Tree Earthquake and Its Aftershocks: Empirical Green's Function Analysis of GEOS and Terrascope Data[J]. Bulletin of the Seismological Society of America. 1995, 85: 1576~1590
    [40]安乙敬一, P. G.理查兹.定量地震学:理论和方法[M].地震出版社.北京. 1986
    [41] Igor A. Beresnev and Gail M. Atkinson. Generic finite-fault model for ground-motion prediction in eastern North America[J]. Bulletin of the Seismological Society of America, Jun 1999; 89: 608 - 625.
    [42] I. A. Beresnev, G. M. Atkinson. Stochastic Finite-Fault Modeling of Ground Motions from the 1994 Northridge, California, Earthquake. I. Validation on Rock Sites[J]. Bulletin of the Seismological Society of America. 1998, 88(6): 1392~1401
    [43] Igor A. Beresnev and Gail M. Atkinson. Source Parameters of Earthquakes in Eastern and Western North America Based on Finite-Fault Modeling[J]. Bulletin of the Seismological Society of America, Mar 2002; 92: 695 - 710..
    [44] X. X. Tao, X. D. Sun, G. X. Wang. An dynamic corner frequency based source spectral model[C]. Proc. of the 14World Conference on Earthquake Engineering: S02004, 2008.
    [45]王国新.强地震动衰减研究[D].中国地震局工程力学研究所. 2001.
    [46] D. J. Wald, T. H. Heaton, and K. W. Hudnut. The slip history of the 1994 Northridge, California, earthquake determined from strong-motion, teleseismic, GPS, and leveling data[J]. Bulletin of the Seismological Society of America, Feb 1996; 86: S49 - S70.
    [47] http://peer. berkeley.edu/peer_ground_motion_database
    [48] Satoshi Ide. Estimation of Radiated Energy of Finite-Source Earthquake Models[J]. Bulletin of the Seismological Society of America, Dec 2002; 92: 2994 - 3005.
    [49] Takanori Matsuzawa, Minoru Takeo, Satoshi Ide, Yoshihisa Iio, Hisao Ito, Kazutoshi Imanishi, and Shigeki Horiuchi. S-wave energy estimation of small-earthquakes in the western Nagano region, Japan[J]. GEOPHYSICAL RESEARCH LETTERS, 2004, VOL. 31, L03602.
    [50] H. Kanamori, J. Mori, E. Hauksson, T. H. Heaton, L. K. Hutton, and L. M. Jones. Determination of earthquake energy release and ML using TERRAscope[J]. Bulletin of the Seismological Society of America, Apr 1993; 83: 330 - 346.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700