用户名: 密码: 验证码:
岩体现场大型变形试验及工程应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
向家坝水电站坝址所在地区岩性构造极为复杂,其中左岸揭露挤压破碎带规模大,厚度多在10m以上,最大可达50余m,性状较差,产状平缓,在河床较多坝段均有分布,鉴于规模、性状及分布位置,该挤压破碎带对工程影响巨大,如果不能正确评价挤压带的力学参数及利用性,将直接影响施工处理措施,甚至影响对未来混凝土重力坝及相关设施的安全运营。而根据现场调查及试验结果,挤压破碎带受开挖、爆破影响大,暴露条件下松弛严重,规范规定的常规现场变形试验方法获得的变形模量极低,无法获得原位条件下破碎带的变形参数,使评价破碎带可利用性、准确获得置换及保留质差岩体空间位置等方面遇到了巨大难题和挑战,成果直接关系向家坝水电站这一世界级工程的成败。有鉴于此,论文开展了现场特大型变形试验仪器研制、盖层条件下变形模量计算公式推导等方面的研究,主要取得了以下成果:
     (1)在现场开挖坝基详细调查、测量的基础上,结合前期勘探资料揭露成果,通过建立三维空间模型,准确获得了左岸挤压破碎带空间发育特征,准确确定了破碎带在开挖坝基中的出露位置及建基面以下分布位置。
     (2)通过现场调查及试验结果,确定了左岸挤压破碎带的组成物质、性状、结构特征等基本要素,为评价破碎带力学参数奠定了基础。
     (3)针对开挖揭露的破碎带开展了规范规定的常规刚性承压板法现场变形试验,揭露了破碎带改变赋存环境条件下松弛严重、模量低的特征,以常规试验方法难以获得原位条件下破碎带的变形参数。
     (4)以水利水电工程岩石试验规程中规定的现场刚性承压板法变形试验为基本理论依据,开展了现场特大型变形试验仪器的设计,设计的仪器可在现场开展承压板面积5000cm2,最大出力450吨的变形试验。
     (5)为了确保较为准确的获得破碎带原位条件下的变形模量,在现场开展特大型变形试验过程中,应在破碎带上部保留一定厚度的盖层予以保护,防止破碎带发生松弛导致获得的变形模量失真,论文根据弹性力学理论,推导了盖层条件下破碎带变形模量计算的理论公式。
     (6)利用设计的仪器,现场开展了不同盖重条件下破碎带的特大型变形试验,获得了不同盖重条件下破碎带的变形模量,并采用三维有限元软件计算、分析,获得不同深度岩体中的应力量值及变形量,计算结果与试验结果较为一致,证明了试验方法和计算公式的合理性和准确性。
     (7)根据试验结果,对不同环境下挤压破碎带及影响带的变形模量进行综合取值。
Xiangjiaba hydropower station dam region is extremely complex lithology structure,Left side with large scale expose extrusion,more than 10m in thickness.It is up to 50 m,poor characters,altitude in the flat,there are many in the river dam.Because ti have given size and characters and distribution,the extrusion of engineering have great influence.If we are not correct evaluation of mechanical parameters and squeezing by sex,it will directly influence the construction treatment measures.Even affect the future concrete gravity dam and related facilities of the safe operation.But according to the field investigation and test results,extrusion belt by excavation,blasting effect is large.Under the condition of exposure the fracturezone had happened serious relaxation,rules and regulations of the conventional method of deformation test site deformation modulus is extremely low,so we are unable to obtain in-situ conditions of distortion parameters.It make evaluation with availability,accurately obtain displacement and bad aspects of rock space position, problems and challenges encountered tremendous.Results is directly related to this world class engineering xiangjiaba hydropower station of success.In view of this,in the large deformation paper experiment instrument development,cover conditions deformation modulus calculation formula, etc.Major achievements made below:
     ( 1 ) In the dam foundation excavation based on the detailed investigation and measurement,combined with the exploration data revealed results,author had constructed a three dimensional space model,author had won the leftbank extrusion with space development characteristics,author determined accurately with the dam in the excavation under the bearing surface position and location distribution.
     (2)Through the investigation and test results, author determined the leftbank extrusion of material composition, properties and structure elements
     (3)For the excavation of the broken belt in expose author done the conventional rigid standard pressure plate method on-site deformation.Author revealed the broken belt change environment conditions, low modulus is flabby, with characteristics of conventional test methods to obtain in-situ conditions of distortion parameters.
     (4)In hydropower engineering rock testing procedures stipulated in the field of deformation rigid compression test for basic theoretical basis,author conducted on-site large deformation test instrument design.The design of the instrument can be confined plate in 5000cm2 area, the maximum output 450 tons of deformation test.
     (5)In order to ensure that the fracture zone obtain more accurate in-situ conditions of deformation modulus,in the process of test in large deformation we must take part in the cover of the thickness of reserve shall be protected.We must prevent fracture zone of slack to happen deformation modulus distortion.Based on the theory of elastic mechanics,author in the paper deduced caprocks conditions broken belt deformation modulus calculation formula of the theory.
     (6)Author use the apparatus in the design in different conditions with heavy cover large deformation test.Author adopt 3d finite element software calculating and analyzing the different depth, the stress and deformation of rock mass.Calculation results are consistent with the experimental results,so it proves the experimental method and calculation formula of the accuracy and rationality.
     (7)According to the test results,author obtained with different environment comprehensive deformation modulus.
引文
[1]水利水电工程岩石试验规程(SL264-2001)中华人民共和国水利部,2001
    [2]水利水电工程地质勘察规范(GB 50287-99)国家质量技术监督局、中华人民共和国建设部1999
    [3] D.Stokols,Barriers to transdisciplinarity research in youth tabacco use prevention[J],Report from the working group to the youth tobacco use prevention initiative,1998.
    [4]周兆透.论大学中的跨学科研究组织及其管理创新[J].高等农业教育,2006(9):21-24.
    [5]吴辉.加州大学跨学科研究机构及对我们的启示[J].研究与发展管理.2001,13(5):67-71
    [6] Kuykendall, Martha G.、Kruse, Sarah E.; McNutt, Marcia K.,Effects of changes in plate motions on the shape of the Marquesas fracture zone[J],Geophysical Research Letters,1994
    [7] Bohnenstiehl, DelWayne R. Tolstoy, MayaChapp, Emily,Breaking into the plate: A 7.6 Mw fracture-zone earthquake adjacent to the Central Indian Ridge[J],Geophysical Research Letters,2004
    [8] Kepezhinskas, P.K. Raznitsin, Yu.N.; Dmitriyev, D.A. , New data on the structure, composition and age of nonspreading blocks in the area of the doldrums fracture zone, central atlantic[J],Doklady. Earth science sections,1990
    [9] Tannant, D.D. Kaiser, P.K.Chan, D.H.,Effect of tunnel excavation on transmissivity distributions and flow in a fracture zone[J],Canadian geotechnical journal,1993
    [10] Napier, J.A.L. Daehnke, A.; Dede, T.; Hildyard, M.W.; Kuijpers, J.S.; Malan, D.F.; Sellers, E.J.; Turner, P.A.,Quantification of stope fracture zone behaviour in deep level gold mines[J],Journal of The South African Institute of Mining and Metallurgy,1997
    [11] Napier, J.A.L. Daehnke, A.; Dede, T.; Hildyard, M.W.; Kuijpers, J.S.; Malan, D.F.; Sellers, E.J.; Turner, P.A.,Quantification of stope fracture zone behaviour in deep level gold mines[J],Journal of The South African Institute of Mining and Metallurgy,1997
    [12] White, Matthew J. ; Saegusa, Hiromitsu,Representation of fracture zone interpretation uncertainty in 3D geological models of the Mizunami Underground Research Laboratory[J], Japan,Materials Research Society Symposium Proceedings,2004
    [13] Li, Yingping ;Cheng, Chuen H.; Toksoz, M.Nafi,Seismic monitoring of the growth of a hydraulic fracture zone at Fenton Hill[J], New Mexico,Geophysics,1998
    [14] Fabrizio Storti,Andrea Billi ;,Francesco Salvini,Prticle size distributions in natural carbonate fault rocks:insights for non-self-similar cataclasis[J],Earth and Planetary Science Letters206(2003)1973-186
    [15] Andrea Billi,On the extent of size range and power law scaling for particles of natural carbonate fault cores[J],Jourual of Structural Geology,2007
    [16] R. M. Stesky, W. F. Brace, D. K. Riley and P. -Y. F. Robin., Friction in faulted rock at high temperature and pressure[J] .,Tectonophysics,1974,23(1-2);177-203
    [17] J T. Cataclasis and the generation of fault gouge[J],Geological Society of America Bulletin, 1974, 85 (3) :1515~1522
    [18] Sibson R H. Fault rock and faultmechanisms[J],Journal ofGeological Society,1977, 133 :191-221 .
    [19] E.H.Rutter,R.H.Maddock,S.H.Hall,S.H.White. Comparative microstructures of natural and experimentally produced clay-bearing fault gouges[J],Pure Appl.Geophys, 1986, 124 :3-30 .
    [20] CHESTER F M, EVANS J P, BIEGEL R L, Internal structure and weakening mechanisms of the San Andreas fault[J],J Geophys Res,1993, 98 :771-786 .
    [21] Hattori I, Yamamoto H.,Rock fragmentation and particle size in crushed zones by faulting[J],Jour Geol, 1999, 107 :209~222
    [22] Marone C, Scholz C H. Particle-size distribution and microstructures within simulated fault gouge[J],.Structural Geology. 1989, 11(7) :799-814
    [23] J.E.Wilson,J.S.Chester,F.M.Chester , microfracture analysis of fault growth and wear processes,Punchbowl Fault,San Andreasystem,California[J] ,.Journal of Structural Geology,
    [24]陈辉;寺坪水电站断层破碎带处理施工技术葛洲坝集团科技2008/02
    [25]刘祥志;锚、网、喷支护在断层破碎带的应用煤矿支护2005/01
    [26]卢二虎;马志刚;大断面巷道过断层破碎带的掘进与支护方法煤矿支护2005/03
    [27]唐军峰;徐国元;唐雪梅;张凯;坝基破碎带岩体渗透特性试验研究煤矿支护2005/03
    [28]徐强;穿越大跨度馒头山隧道断层破碎带施工技术路基工程2010/04
    [29]武鹏飞;田取珍;构造破碎带巷道注浆加固技术采矿技术2010/02
    [30]戴有强;掘进过断层破碎带支护方法价值工程2010/04
    [31]黄芝权;浅析隧道断层破碎带注浆工艺山西建筑2010/07
    [32]杨继转;陈东;隧道断层破碎带施工技术中国新技术新产品2010/14
    [33]董宪明;隧道浅埋破碎带注浆预加固技术效果分析与评价内蒙古公路与运输2010/01
    [34]许宝田;阎长虹;陈汉永;周伟胜;边坡岩体软弱夹层力学特性试验研究岩土力学2008/11
    [35]唐良琴;软弱夹层粒度成分与强度参数的关系研究重庆交通学院学报2005/02
    [36]唐良琴;聂德新;任光明;软弱夹层粘粒含量与抗剪强度参数的关系分析中国地质灾害与防治学报2003/02
    [37]黄润秋;余嘉顺;软弱夹层特性对地震波强度影响的模拟研究工程地质学报2003/03
    [38]刘晶辉;白富英;陈雪松;露天煤矿软弱夹层剪切强度特性分析露天采煤技术1999/01
    [39]张咸恭;聂德新;韩文峰;影响软弱夹层抗剪强度的主要因素及其相关关系研究地质灾害与环境保护1990/02
    [40]曾昭明;周兴志;徐瑞春;产状平缓多层面多软弱夹层地基深基坑开挖中的岩体变形人民长江1978/03
    [41]陈正峰;聂德新;王维早,绿帘石石英错动带空间展布与力学特征分析,山西建筑,2007//03
    [42]张强勇;王建洪;费大军;贺如平;曾纪全;黄彦昆;大岗山水电站坝区岩体的刚性承压板试验研究[J]岩石力学与工程学报2008/07
    [43]张亚丹;黑河龙首二级电站厂房区断层破碎带岩体变形试验研究[J] ,甘肃农业2004/09
    [44]崔银祥,碎裂岩体用作高混凝土重力坝坝基的可能性评价——以金沙江金安桥水电站为例[D],成都理工大学,2005
    [45]周洪福,深覆盖宽河床多种复杂岩体作为重力坝建基岩体研究——以怒江赛格水电站为例[D],成都理工大学,2008
    [46] Georgiadis, Michael,Strain-rate influence on the interpretation of plate bearing tests[J],Geotechnical Testing Journal,1988
    [47] Cintra, JoséCarlos A.1Macacari, Marcos F.1Aoki, Nelson1Vilar, Orencio M.1 Solos e Rochas,Variation of the bearing capacity as a function of matric suction and depth in plate load tests on collapsible soil [J],Solos e Rochas,2005
    [48] Earl, R、Earl, R.,Deformation processes below a plate sinkage test on sandy loam soil: Theoretical approach[J],Journal of Terramechanics,2001
    [49] Z.T Bieniawski.,Engineering Classification of Jointed RockMass [M],Trans.S.Africa Inst. Civ. Engrs, 1973,15(12).
    [50] Lekhnitskii SG. Theory of Elastcity of an Anisotropic Elastic Body[M].San Franicesco.Holdenn-Daty Inc. 1963.
    [51] Lekhnitskii SG. Theory of an Anisotropic Body[M].Moscow, Mir Publishers, 1987.
    [52] Amadei, B, Int. J. Rock Mech. Min. Strength of a Regularly Jointed Rock Mass Under Biaxial and Axisymmetric Loading Conditions"[J],Sci.&Geomech. Abstr.,Vol. 25, No. 1 3-13, 1988.
    [53]肖本职;庞正江;刚性承压板中心孔法变形试验设备和方法[J],长江科学院院报,2009/07
    [54]费大军;贺如平;曾纪全;王建洪;软弱岩体大型刚性承压板中心孔变形试验研究[J],四川水力发电,2007/02
    [55]张宜虎;石安池;周火明;钟作武;熊诗湖;中心孔变形试验资料的解释与应用[J],岩石力学与工程学报,2008/03
    [56]李志敏;冯连;现场岩体变形试验刚性承压板法的影响因素[J],吉林水利,2005/10
    [57]李志国;冯锐;夹层倾角及深度对承压板试验影响的数值模拟[J],中州煤炭, 2008/06
    [58]唐爱松;熊诗湖;周火明;钟作武;庞正江;承压板法变形试验方法的适宜性研究[J],长江科学院院报,2008/05
    [59]周火明;盛谦;陈殊伟;熊诗湖;杨火平,层状复合岩体变形试验尺寸效应的数值模拟岩石力学与工程学报2004/02
    [60]李迪;王昌明;刚性承压板法变形试验的分层弹模计算长江科学院院报2003/02
    [61]张漫;王志旺;李迪;岩体变形试验分层弹模计算的工程应用长江科学院院报2003/06
    [62]刘彬,软硬相间岩体变形参数理论研究及工程应用[D],成都理工大学,2006.
    [63]张勇,软硬相间层状岩体修建高混凝土坝的适宜性研究[D],成都理工大学,2006
    [64]杨燕;观音岩水电站坝基砂、砾岩溶蚀损伤力学特性与工程应用研究[D],成都理工大学,2009
    [65]陈正峰,高拱坝坝基开挖对建基岩体工程特性影响的研究[D],成都理工大学,2007
    [66]王洁,跨学科科研团队隐性知识转化研究[D],天津大学,2009
    [67]赵玉洁,跨学科团队知识共享影响因素实证研究[D],山东大学,2010
    [68]聂德新,岩质高边坡岩体变形参数及松弛带厚度研究[J],地球科学进展.2004, ( 6):472- 477.
    [69]陈正峰;张勇,坝基开挖产生的爆破松弛带厚度确定[J],地质灾害与环境保护,2007/9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700