用户名: 密码: 验证码:
配网架空线雷电感应过电压计算及闪络概率研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷电感应过电压是配网线路发生绝缘闪络的主要原因,其降低了供电可靠性,给人们生产与生活带来了严重影响,因此,实现雷电感应过电压的计算、预测架空线路的闪络概率并对雷电感应过电压防护措施进行研究具有重要的工程价值和实际意义。
     本文首先介绍了雷电感应过电压的产生机理,雷电感应过电压对输电线路的耐压水平等的重要性,并对雷电回击模型进行了阐述和总结。本文将雷电视为垂直于大地表面的电流通道,基于电磁场理论,利用雷电感应电磁场的近似计算公式,完成了考虑有损大地情况下的雷电感应电磁场的求解;并以所求电磁场为激励,结合Agrawal场线耦合模型,基于时域有限差分法(Finite Difference Time Domain, FDTD)推导了改进电报方程的时域递推差分形式,编写相应的计算程序,实现了配网架空线路的雷电感应过电压计算。通过对一段典型架空线路进行计算并与现有文献结果比较,验证了程序的正确性。
     利用所编写的计算程序,讨论了大地电阻率对雷电感应过电压的影响,得到了在雷电感应过电压计算中必须计及大地损耗的结论。此外,还探讨了配网线路雷电感应过电压闪络概率的计算方法,并讨论了避雷线的架设对线路闪络概率的影响,说明了在线路上方架设避雷线不仅可以减少直击雷害而且还可以有效降低感应雷导致的线路闪络,提高供电可靠性。
LIGHTNING induced overvoltages may cause damage to the insulation of the distribution lines or other power equipments. Erksson et al. have evidenced that the indirect lightning return strokes, hitting the ground in the vicinity of overhead lines, constitute a more dangerous cause of damage than direct strikes, because of their more frequent occurrence. The research on the calculation of the lightning-induced overvoltages and prediction of the flashover of the distribution power system are very important for the insulation design of power lines.
     This paper introduces the mechanism of the lightning over-voltage, the importance of lightning induced over-voltage for the voltage level of the distribution overhead line. It assumes that the shape and speed of the lightning current remain the same with height while the amplitude is exponentially decay with the height. As the disadvantage of having a discontinuity at the stroke tip, which is presented in other models, is avoided. The Heidler model is chosen as the lighting base current model. Assuming the lightning channel as a vertical channel to the ground, the electromagnetic is calculated based on the Maxwell equation. The Agrawal model is chosen as the coupling of field-to-line model and the over-voltage induced by lightning strikes was calculated base on FDTD and Agrawal Model. Through a section of a typical calculation of overhead lines and compared with the existing literature, correctness of the method is verified.
     Discussion is implemented for the effects of the conductivity of the lossy ground to the lightning-induced overvoltages. Furthermore, the method about how to evaluate the flash over probability of the distribution system is presented and the discussion about the effects of the ground wire to the lightning-induced overvoltages is implemented, as a result, the equipment of the ground wire can reduce the overvoltages of the overhead lines and improve the quality of the distribution power system.
引文
[1]关志根.高电压工程基础[M].北京:中国电力出版社,第一版,2003.
    [2]方瑜.配电网过电压[M].水利电力出版社,第一版,1994.
    [3]文习山,彭向阳,解广润.架空配电线路感应过电压的数值计算田.中国电机工程学报,1998,18(4):299-301.
    [4]文武.感应雷电磁干扰及防护研究[D].武汉大学,2004.
    [5]谭湘海.输电线路的防雷设计[D].湖南大学,2004.
    [6] Nucci. Lighting-induced voltages on overhead lines[J]. IEEE Transaction on Electromagnetic Compatibility, 1993.
    [7]陈燕萍,陈慈首.新型雷电通道模型简介[J].华中电力,2000,13(3):11-14
    [8] M Rubinstein, M A Uman. Transient electric and magnetic fields associated with establishing a finite electrostatic dipole revisited[J] IEEE Transaction on Electromagnetic Compatibility,1991,33(4): 312-320.
    [9]王勇,赵锦成,解璞.基于PSCAD/EMTDC的雷电流仿真模型研究[J].移动电源与车辆.2008,3:24-26.
    [10] S. Rusck,“Induced lightning overvoltages on power transmission lines with special reference to the overvoltage protection of low voltage networks”Ph.D. dissertation, Royal Inst. Technol., Stockholm, Sweden, 1957.
    [11] A. Sommerfeld,“Uber die Ausbreitung derWellen in der drahtlosen Telegraphie,”Ann. Phys., vol. 28, no. 4, pp. 665–736, 1909.
    [12] A. Zeddam and P. Degauque,“Current and voltage induced on a telecommunication cable by a lightning stroke,”in Lightning Electromagnetic, R. L. Gardner, Ed. Bristol, PA: Hemisphere, 1990, pp. 377–400.
    [13] E. M. Thompson, P. J. Medelius, M. Rubinstein, M. A. Uman, J. Johnson, and J.W. Stone,“Horizontal electric fields from lightning return strokes,”J. Geophys. Res., vol. 93, pp. 2429–2441, 1988.
    [14] K.A.Norton,“Propagation of radiowaves over the surface of the earth and in the upper atmosphere: Part II,”Proc. IRE, vol. 25, no. 9, pp. 1203–1236, Sept. 1937.
    [15] V. Cooray,“Horizontal fields generated by return strokes,”Radio Sci., vol. 27, pp. 529–537, 1992.
    [16] M. Rubinstein,“An approximate formula for the calculation of the horizontal electric field from lightning at close, intermediate and long range,”IEEE Trans. Electromagn. Compat., vol. 38, no. 3, pp. 531–535, Aug. 1996.
    [17] V. Cooray,“Some considerations on the Cooray–Rubinstein formulation used in deriving the horizontal electric field of lightning return strokes over finitely conducting ground,”IEEE Trans. Electromagn. Compat., vol. 44, no. 4, pp. 560–566, Nov. 2002.
    [18] A. Shoory, R. Moini, S. H. H. Sadeghi, and V. A. Rakov,“Analysis of lightning-radiated electromagnetic fields in the vicinity of lossy ground,”IEEE Trans. Electromagn. Compat., vol. 47, no. 1, pp. 131–145, Feb. 2005.
    [19] Y. Baba and V. A. Rakov,“Voltages induced on an overhead wire by lightning strikes to a nearby tall grounded object,”IEEE Trans. Electromagn. Compat., vol. 48, no. 1, pp. 212–224, Feb. 2006.
    [20]陆小花.架空配电线路感应雷过电压计算与防护的研究[J].河海大学,2007.
    [21] Berger, K., R.B. Anderson, and H. Kroninger, Parameters of lightning flashes, Electra. no., 41, 23-37, 1975.
    [22] MartinA.Uman. Natural Lightning Industrial and commercial Power System Technical Conference 1993,1-7
    [23]罗仕乾.雷电波的频谱及能量分布.高电压技术.1995,21(1),85-86.
    [24]陈家宏,冯万兴,王海涛.雷电参数统计方法[J].国网武汉高压研究院.2007.
    [25] Rakov, V.A., Engineering Models of the Lightning Return Stroke, in Proc. of Int. Symp. on Lightning Protection (VII SIPDA), Curitiba, Brazil, 2003.
    [26] R., B. Kordi, G.Z. Rafi, and V.A. Rakov, A new lightning return stroke model based on antenna theory, Journal of Geophysical Research, 105 (D24), 29693-702, 2000.
    [27] Price, G.H., and E.T. Pierce, The modeling of channel current in the lightning return stroke, Radio Science, 12 (3), 381-8, 1972.
    [28] Bruce, C.E.R., and R.H. Golde, The lightning discharge, The journal of the institution of electrical engineers, 88 (6), 487-520, 1941.
    [29] Uman, M.A., and D.K. McLain, Magnetic field of the lightning return stroke, Journal of Geophysical Research, 74 (28), 6899-910, 1969.
    [30] Nucci, C.A., C. Mazzetti, F. Rachidi, and M. Ianoz, On lightning return stroke models for lemp calculations, in 19th international conference on lightning protection, Graz, 1988.
    [31] Rachidi, F., and C.A. Nucci, On the Master, Uman, Lin, Standler and the Modified Transmission Line lightning return stroke current models, Journal of Geophysical Research, 95 (D12), 20389-94, 1990.
    [32] Rakov, V.A., and A.A. Dulzon, Calculated electromagnetic fields of lightning return strokes, Tekhnicheskaya Elektrodinamika, no. 1, 87-9, 1987.
    [33] Heidler, F., Traveling current source model for LEMP calculation, in 6th Symposium and Technical Exhibition on Electromagnetic Compatibility, pp. 157-62, Zurich, Switzerland, 1985b.
    [34] Diendorfer, G., and M.A. Uman, An improved return stroke model with specified channel-base current, Journal of Geophysical Research, 95 (D9), 13621-44, 1990.
    [35] M Rubinstein, M A Uman. Transient electric and magnetic fields associated with establishing a finite electrostatic dipole revisited[J]. IEEE Transaction on Electromagnetic Compatibility,1991,33(4): 312-320.
    [36] C′elio Fonseca Barbosa and Jos′e Osvaldo Saldanha Paulino. An Approximate Time-Domain Formula for the Calculation of the Horizontal Electric Field from Lightning. IEEE Transaction on Electromagnetic Compatibility, vol. 49, no. 3, pp. 593–601, Feb. 2007.
    [37] Agrawal, A.K., H.J. Price, and S.H. Gurbaxani, Transient response of multiconductor transmission lines excited by a nonuniform electromagnetic field, IEEE Transactions on Electromagnetic Compatibility, EMC22 (2), 119-29, 1980b.
    [38] Taylor, C.D., R.S. Satterwhite, and C.W. Harrison, The response of a terminated two-wire transmission line excited by a nonuniform electromagnetic field, IEEE Transaction on Antenna propagation, AP-13, 1965.
    [39] Rachidi, F., Formulation of the field-to-transmission line coupling equations in terms of magnetic excitation fields, IEEE Trans. on Electromagnetic Compatibility, 35 (3), 1993.
    [40] Tesche, F.M., M. Ianoz, and T. Karlsson, EMC analysis methods and computational models, John Wiley and Sons, 1997.
    [41]Taflove, A., Computational electrodynamics : the finite-difference time-domain method, Artech House, Boston, 1995.
    [42]齐磊.多导体传输线的时域有限差分法研究.硕士学位论文.河北保定,华北电力大学,2002.
    [43] Gustavsen B, Semlyen A. Rational approximation of frequency domain responses by vector fitting[J]. IEEE Transaction on Power Delivery, 1999, 14(3):1052-1062.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700