用户名: 密码: 验证码:
注射病原菌、盐度变化对凡纳滨对虾血蓝蛋白合成、酚氧化酶活性的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了注射病原菌、盐度变化对凡纳滨对虾血蓝蛋白合成、酚氧化酶活性的影响。主要内容包括:①凡纳滨对虾血蓝蛋白酚氧化酶活性的研究;②注射病原菌对凡纳滨对虾血蓝蛋白合成、酚氧化酶活性的影响;③盐度变化对凡纳滨对虾血蓝蛋白合成、酚氧化酶活性的影响。主要研究结果如下:
     1凡纳滨对虾血蓝蛋白酚氧化酶活性的研究
     本实验选择A、B、C等7种抑制剂为材料,以凡纳滨对虾血细胞为研究对象,最终筛选出能够有效抑制凡纳滨对虾血细胞酚氧化酶活力而不抑制血蓝蛋白酚氧化酶活力的抑制剂---A并确定其适合的抑制浓度为10μM。在此基础上,采用抑制剂,结合native-PAGE电泳与L-DOPA活性染色的方法,证明了凡纳滨对虾正常机体血蓝蛋白(分子量450kD)表现出酚氧化酶活性,并且通过SDS-PAGE与L-DOPA活性染色相结合的方法,证实血蓝蛋白展现酚氧化酶活性的单体是75 kDa亚基。
     2注射病原菌对凡纳滨对虾血蓝蛋白合成、酚氧化酶活性的影响
     本文研究了注射病原菌对凡纳滨对虾血蓝蛋白合成、酚氧化酶活力的影响。结果表明:注射哈维氏弧菌对凡纳滨对虾血蓝蛋白含量、p75和p77亚基、mRNA表达以及血淋巴、血细胞和血蓝蛋白酚氧化酶活力的影响显著(P<0.05),而对照组无显著变化。血蓝蛋白含量和p75、p77亚基表达在0-24h内呈峰值变化,其中血蓝蛋白含量在6h内逐渐下降、且6h时达到最低值,而p75、p77亚基表达在3h内无明显变化,然后均表现为逐渐上升趋势,各指标在12h时达到最大值,而且亚基表达与注射哈维氏弧菌浓度呈正相关,24h后各指标趋于稳定,与对照组无显著差异。在注射哈维氏弧菌短时间内血蓝蛋白mRNA表达呈迅速上升趋势,其中注射6×106cells/mL处理组mRNA表达在6h内呈峰值变化,3h时达到最大值,6-48h内保持稳定,但仍明显高于对照组水平(P<0.05),而注射6×105 cells/mL处理组mRNA表达量虽然增加,但只在6h达到最大值时与对照组差异显著(P<0.05),其余时间均与对照组差异不显著。血淋巴、血细胞和血蓝蛋白酚氧化酶活力分别在12h、24h内呈峰值变化,分别于3h、6h、3h时达到最大值、最小值和最大值,然后各指标分别于12h、24h后恢复至对照组水平。由此说明凡纳滨对虾在病原入侵下启动了血蓝蛋白的合成,血蓝蛋白mRNA表达上调,新合成的血蓝蛋白主要执行酚氧化酶等免疫功能,协同机体其它免疫因子共同参与机体的免疫防御。
     3盐度变化对凡纳滨对虾血蓝蛋白合成、酚氧化酶活性的影响。
     本文研究了盐度变化(盐度34→30,26)对凡纳滨对虾血蓝蛋白mRNA、p77和p75亚基表达水平及血蓝蛋白酚氧化酶活性的影响。结果显示:盐度变化对凡纳滨对虾血蓝蛋白含量、p75和p77亚基以及血蓝蛋白mRNA的表达影响显著(P<0.05),而对照组无显著变化。血蓝蛋白含量、p75和p77亚基表达在0-48h内呈峰值变化,各指标在12h内均表现为逐渐上升趋势、12h时达到最大值,并且与盐度变化呈明显的正相关性;之后逐渐下降,血蓝蛋白含量、p75和p77亚基表达分别于24h、24h和48h趋于稳定,与对照组无显著差异。在盐度变化12h内血蓝蛋白mRNA表达呈迅速上调趋势,12h时达到最大值,48-72h内稳定于对照组水平(P>0.05)。
     盐度变化对凡纳滨对虾血淋巴、血细胞和血蓝蛋白酚氧化酶活力影响显著(P<0.05),而对照组无显著变化。各指标在48h内呈峰值变化,分别于12h时达到最大值或最小值,且与盐度变化呈明显的正负相关性;之后各指标趋于稳定,其中血淋巴、血细胞酚氧化酶活力24h后保持稳定,与对照组无明显差异,而血蓝蛋白酚氧化酶活力于48h后恢复至对照组水平。
This article mainly studied the effects of hemocyanin pathogen and environmental stress on hemocyanins anabolism and phenoloxidase activity of Litopenaeus vannamei. The main contents includes:①Study on the phenoloxidase activity of hemocyanin of Litopenaeus vannamei.②Effects of Vibrio harveyi injection on the anabolism and phenoloxidase activity of hemocyanin of Litopenaeus vannamei.③Effects of salinity changes on the anabolism and phenoloxidase activity of hemocyanin of Litopenaeus vannamei.
     1 Study on the phenoloxidase activity of hemocyanin of Litopenaeus vannamei. The study was made to the Litopenaeus vannamei haemocytes and inhibitor-A, inhibitor-B and so on, finally screen out the inhibitor-A as the effective phenoloxidase inhibitor---10μM inhibitor-A had the best restrain effect. Then the result of native-PAGE and L-DOPA coloration showed: hemocyanin with 450kD had the phenol oxidase activity in the Litopenaeus vannamei. And the SDS-PAGE and L-DOPA associative measure suggested that the phenoloxidase activity subunit of the hemocyanin was p75-subunit.
     2 Effects of Vibrio harveyi injection on the anabolism and phenoloxidase activity of hemocyanin of Litopenaeus vannamei.
     In the present paper, effects of pathogen injection on the anabolism and phenoloxidase activity of hemocyanin of Litopenaeus vannamei were studied. The results showed that injection of Vibrio harveyi had significant effects on the hemocyanin concentration, p75- and p77-subunit and mRNA expression, and phenoloxidase activity of hemolymph, haemocyte and hemocyanin in Litopenaeus vannamei (p<0.05), while no marked difference can be observed in the control. The hemocyanin concentration and p75 and p77 subunits expression showed peak changes between 0 and 24h. The hemocyanin concentration was gradually declined between 0 and 6h and reached the minimum at 6h, but no significant impacts on p75 and p77 subunits expression were observed before 3h. Subsequently, both hemocyanin concentration and subunits expression showed obviously increasing trend and reached the maximum at 12h. Moreover, the level of subunits expression had positive correlation with the concentration of injected Vibrio harveyi, and all parameters became stable and recovered to the control level after 24h. The hemocyanin mRNA expression of injection of pathogenic bacteria group indicated a rapid increasing trend compared with the control group. The expression of hemocyanin mRNA of the 6×106 cells/mL pathogenic bacteria group showed peak changes before 6h and reached the maximum at 3h, which was much higher than the control level (p<0.05) and maintained the high level until 48h. However, the expression of hemocyanin mRNA in 6×105 cells/mL pathogenic bacteria group exhibited a slight increase tendency and showed significant difference with the control level at 6h, while in other sample time, no obvious difference could be drawed.
     The phenoloxidase activities of hemolymph and haemocyte as well as hemocyanin phenoloxidase activity showed peak-value changes before 12h, 12h and 24h, respectively. And all parameters peaked at 3h , 6h and 3h, and recovered to the control level at 12h ,12h and 24h. This study demonstrated that Litopenaeus vannamei started the synthesis and mRNA expression upward under the invasion of pathogen, and new synthesized hemocyanin mainly played phenoloxidase functions, which involved in immune response in coordination with other immune factors.
     3 Effects of salinity changes on the anabolism and phenoloxidase activity of hemocyanin of Litopenaeus vannamei.
     The present study examined the effect of salinity change on expression of hemocyanin gene and p77-subunit and p75-subunit and phenoloxidase activity. The results showed that:
     The salinity change had a significant influence on the content of hemocyanin in haemolymph and expression of p77 and p75 subunit and hemocyanin mRNA, in hepatopancreas of Litopenaeus vannamei (p<0.05), while no marked difference can be observed in the control. The content of hemocyanin in haemolymph and expression of p77 and p75 subunit in Litopenaeus vannamei exposing to the salinity declining showed peak change during 0-48h, reached the maximum at 12 h, and stabilized at 24h, 24h and 48h, respectively. The expression of hemocyanin mRNA showed the peak-value change over the control during 24h, reached to the highest level at 12h, and finally got to be stable after 12h, then declined to the level of control. A significant difference existed between the 30 and 26 group in p77-subunit expression, and then became stable over the control(P>0.05).
     The salinity change had notable effects on phenoloxidase activities of haemolymph, haemocyte and hemocyanin of Litopenaeus vannamei (p<0.05), while no marked difference can be observed in the control, and the two treated groups (30 and 26 group) had no significant difference. During the 48h, three parameters showed peak changes, phenoloxidase activity in haemolymph and haemocyte and hemocyanin respectively reached to the maximum and minimum at 12h, and all of them had positive or negative correlation with the salinity change. Then all parameters became stable and recovered to the control level at 24h, 24h and 48h, respectively.
引文
陈月忠,钟硕良,周宸.成虾发光病病原体的分离鉴定及防治技术研究[J].中山大学学报:自然科学版, 2000, 39(增刊): 218-223.
    李雷,王金星,翠洁.对虾免疫防御中的阳离子和阴离子抗菌肽.海洋与湖沼[J], 2003, 34(2):217-223.
    李晓燕,孙塞,路军.血蓝蛋白模型化合物的合成和载氧性能[J].山东大学学报,自然科学版, 1994, 29(2): l96-199.
    刘问,钱冬,杨国梁,等.南美白对虾虾苗淡化期间发光病病原研究[J].集美大学学报:自然科学版, 2004, 9(4): 300-304.
    罗日详.中国对虾凝集素活力及弧菌的诱导动力学[J].海洋学报, 1997, 19(4): 117-120.
    王雷,李光友,毛远兴.中国对虾血淋巴中抗菌、溶菌活力与酚氧化物酶活力的测定及其特性研究[J].海洋与湖沼, 1995, 26 (1): 34-41.
    章跃陵,陈俊,林伯坤,等.南美白对虾血蓝蛋白血细胞凝集活性初探[J].汕头大学学报(自然科学版), 2005, 20(3): 48-53.
    章跃陵,林伯坤,陈俊,等.凡纳滨对虾血蓝蛋白的细菌凝集活性[J].中国水产科学, 2006, 13(6): 1006-1011.
    章跃陵,林智建,李祖江,等.凡纳滨对虾血清中直接与病原菌相结合的主要蛋白的鉴定[J].水产学报, 2008, 32(1): 105-110.
    章跃陵,刘光明,王三英,等.南美白对虾血蓝蛋白与抗人IgG相互作用的研究[J].汕头大学学报(自然科版), 2005, 20(2): 32-36.
    章跃陵,王三英,刘光明,等.南美白对虾血蓝蛋白对酚氧化酶活性的影响[J].中国水产科学, 2005, 4: 402-406.
    章跃陵,卓奕明,朱永飞,等.凡纳滨对虾人工感染细菌后肝胰脏中主要变化蛋白的研究[J].水产科学, 2005, 24(6): 19-23.
    章跃陵.南美白对虾类Ig的定性、功能和免疫分子进化的研究[D].厦门:厦门大学, 2003: 72-77.
    Adachi K, Hirata T, Nishioka T, et al. Hemocyte components in crustaceans convert hemocyanin into a phenoloxidase - like enzyme[J]. Comp Biochem Physiol, 2003, 134B: 135-141.
    Adachi K., Hirata T, Nagai K., Sakaguchi M. Hemocyanin a most likely inducer of black spots inkuruma prawn Penaeus japonicus during storage[J]. Food Sci., 2001, 66: 1130-1136.
    Alvarez J D, Austin B, Alvarez A M, et a1. Vibrio harveyi: a pathogen of penaeid shrimps and fish in Venezuela[J]. Fish Dis, 1998, 21: 313-316.
    Ashida M, Sǒderhāll K. The prophenolocidase activating system in crayfish[J]. Comp Biochem Physiol, 1984, 77(1): 21-26.
    Ashida M., Purification and characterization of pre-phenoloxidase from hemolymph of the silkworm Bombyx mori[J]. Archives of Biochemistry and Biophysics, 1971, 144(2): 749-762.
    Asokan R, Arumugam M, Mullainadhan P. Activation of prophenoloxidase in the plasma and haemocytes of the marine mussel Pernaviridis Linnaeus[J]. Dev Comp Immunol, 1997, 21: 1-12.
    Aspán A, Huang T S, Cerenius L, et a1. cDNA cloning of prophenoloxidase from the fresh crayfish Pacifastacus leniusculus and its activation[J]. PNAS, 1995, 92: 939-943.
    Aspán. A, S?derh?ll K, Duvic. B. The pro-PO-system and associated proteins: role in cellular communication in arthropods[J]. Research in Immunology, 1990, 114(9): 896-907.
    Bak H J, Beintema J J. Panulirus interruptus hemocyanin: The elucidation of the complete amino acid sequence of subunit a[J]. Eur J Biochem, 1987, 169: 333-348.
    Brivio ME, Mzzzei C, Scari G. ProPO system of Allogamus auricollis(Insecta): effects of various compounds on phenoloxidase activity[J]. Com Biochem Physiol B, 1996, 113: 281-287.
    Burmester T. Evolutionary history and diversity of arthropod hemocyanins[J]. Micron, 2004, 35 :121-122.
    Cerenius L, S?derh?ll. K. The prophenoloxidase-activating system in invertebrates[J]. Immunol Rev 2004, 198: 116-126.
    Chang Che Li, Su Tuen Yeh, Jiann Chu Chen. The immune response of white shrimp Litopenaeus vannamei following Vibrio alginolyticus injection[J]. Fish and Shellfish Immunology, 2008, 25: 853-860.
    Cheng W C, Jiann-Chu. Effects of pH, temperature and salinity on immune parameters of the freshwater prawn Macrobrachium rosenbergii.Fish Shell fish Immunology,2000. 10: 387-391.
    Cuff M., Miller K., van Holde K., Hendrickson W. Crystal structure of a functional unit from Octopus hemocyanin[J]. Mol. Biol, 1998, 278: 855-870.
    Daquinag AC, Nakamura S, Takao T, Shimonishi Y, Tsukamoto T. Primary structure of a potentendogenous dopa-containing inhibitor of phenol oxidase from Musca domestica[J]. Proc Natl Acad Sci , USA, 1995, 28, 92(7): 2964-2968.
    Daquinag AC, Sato T, Koda H, Takao T, Fukuda M, Shimonishi Y, Tsukamoto T. A novel endogenous inhibitor of phenoloxidase from Musca domestica has a cystine motif commonly found in snail and spider toxins[J]. Biochemistry. 1999, 16, 38(7): 2179-2188.
    Decker H, Jaenicke E. Recent findings on phenoloxidase activity and antimicrobial activity of hemocyanins[J]. Dev Comp Immunol, 2004, 28: 673-687.
    Decker H, Rimke T. Tarantula hemoeyanin shows phenoloxidase activity[J]. J Biol Chem, 1998, 273: 25889-25892.
    Decker H, Ryan M, Jaenieke E, et a1. SDS induced phenoloxidase activity of hemocyanins from Limulus polyphemus,Eurypelma californicum and Cancer magister[J]. Bio Chem, 2001, 276:17796-17799.
    Deng Pan, Nanhai He, Zhiyuan Yang, et al. Differential gene expression profile in hepatopancreas of WSSV-resistant shrimp (Penaeus japonicus) by suppression subtractive hybridization[J]. Developmental and Comparative Immunology, 2005, 29 : 103-112.
    Deng Yu Tseng, Pei Lin Ho, Sung Yan Huang. Enhancement of immunity and disease resistance in the white shrimp, Litopenaeus vannamei, by the probiotic, Bacillus subtilis E20[J]. Fish and Shellfish Immunology, 2009, 26: 339-344.
    Destoumieux D, Saulner D, Garnier J, et al. Antifungal peptides are generated from the C terminus of shrimp hemocyanin in response to microbial challenge[J]. J Biol Chem, 2001, 276: 47070-47077.
    Fujimoto K,Okino N,Kawabata S,et a1.Nucleotide sequence of the cDNA encoding the proenzyme of phenoloxidase A1 of Drosophila melanogaster [J].PNAS,1995,92: 7769-7773.
    Gary G, Mrtin, Jo Ellen H, et a1. Localization and roles of coagulogen and transglutaminase in hemolymph coagulation in decapodcrustacens[J]. Comp Biochem Physiol, 1991, 100B (51): 517-522.
    Hata S, Azumi K, Yokosawa H. Ascidian phenoloxidase: its release from hemocytes, isolation, characterization and physiological roles[J]. Comparative Biochemistry and Physiology--Part B: Biochemistry and Molecular Biology, 1998, 119(4): 769-776.
    Hergenhahn HG, Aspan A, S?derh?ll K. Purification and characterization of a high-Mr proteinaseinhibitor of pro-phenol oxidase activation from crayfish plasma[J]. Biochem J, 1987 , 15, 248(1): 223-228.
    Hernández López J, Gollas Galván T, Vargas Albores F. Activation of prophenoloxidase system of the brown shrimp (Penaeus californiensis Holmes)[J]. Comp Biochem Physiol, 1996, 113C: 61-66.
    Hose J E, Martin G G, van Anh Nguyen J L, et al. Cytochemical features of shrimp haemocytes[J]. BiolBull, 1987, 173: 178-187.
    Immesberger A, Burmester T. Putative phenoloxidases in the tunicate Cionaintesti nalis and the origin of the arthropod hemocyanin superfamily[J].J Comp Physiol, 2004, 174 B (2): 169-180.
    Jaenicke E, Decker H. Conversion of crustacean hemocyanin to catecholoxidase[J]. Micron, 2004, 35: 89-90.
    Jaenicke E, Decker H. Functional changes in the family of Type 3 copper proteins during evolution[J]. ChemBiochem, 2003a, in press.
    Jaenicke E, Decker H. Tyrosinases from crustaceans formhexamers[J]. Biochem. J., 2003b, 371: 515-523.
    Jaenicke E, Fll?R, Decker H. Spider hemocyanin binds ecdysone and 20-OH-ecdysone[J]. J Biol Chem 1999, 274: 34267-34271.
    Jeuniaux C. Haemolymph arthropoda [M] Chemical Zoology Arthropoda VI[M]. Academic Press, New York, 1971: 63-118.
    Jiravanichpaisal P, Miyazaki T, Limsuwan C. Histopatholngy, biochemistry and pathogenicity of Vibrio harveyi infecting black tiger prawn Penaeus monodon [J]. Journal of Aquatic Animal Health, 1994, 6: 27-35.
    Joseph A,Philip R.Acute salinity stress alters the haemolymph metabolic profile of Penaeus monodon and reduces immunoeompetence to white spot syndrome virus infection [J].Aquaculture,2007,272(14):87-97.
    Karunasagar I, Pai R, Malathi G R, et a1. Mass mortality of Penaeus monodon larvae due to antibiotic-resistant Vibrio haroeyi infection [J]. Aquaculture, 1994, 128: 203-209.
    Kubo I and Kinst-hori I. J. Agric. Food Chem [M]. 1998, 46: 5338-5341.
    Kubo I and Kinst-hori I. Plant Med [M]. 1999, 65: 19-22.
    Kubo I and Yokokawa Y. Phytochemistry[M]. 1992, 31: 1075-1077.
    Kubo I, Kinst-Hori I, etal. Food Chem [M]. 1997, 48: 1393-1399.
    Kubo I, Kinst-Hori I, etal. J. Nat. Prod [M]. 1994, 57: 545-551.
    Kubo I, Kinst-Hori I, etal. J. Nat. Prod [M]. 1994, 58: 739-743.
    Kubo I, Kinst-Hori I. Flavonols from Saffrom Flower: Tyrosinase Inhibitory Activity and Inhibition Mechanism[J]. Food Chem., 1999, 47: 4121-4125.
    Kubo. In Phytochemicals for Pest Control, ACS Symposium Series 58 (Hedin P, Kollingworth R etal., eds)[M]. American Chemical Society, Washington, D. C., 1997, 310-26.
    Laskowski M Jr, Kato I. Protein inhibitors of proteinases[J]. Annu Rev Biochem. 1980, 49: 593-626.
    Lee S Y, Lee B L, S?derh?ll K. Processing of an antibacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus[J]. J Biol Chem, 2003, 278: 7927-7933.
    Lehnert S, Johnson S. Expression of hemocyanin and digestive enzyme messenger RNAs in the hepatopancreas of the black tiger shrimp Penaeus monodon[J]. Comp Biochem Physiol B, 2002, 133 (2): 163-71.
    Lei Kaiyu, Li Fang, Zhang Mingchang, et a1. Difference between hemocyanin subunits from shrimp Penaeus japonicus in anti-WSSV defense[J]. Dev Comp Immunol, 2008, 2(4): l0-17.
    Liu P C, Lee K K, Yii K C, et a1. Isolation of Vibrio harveyi from diseased Kuruma prawns Penaeus japonicus[J]. Curr Microbiol, 1996a, 33: 129-132.
    Magnus K, Hazes B, Ton-That H, Bonavenura C, Bonaventura J, Hol W. Crystallographic analysis of oxygenated and deoxygenated states of arthropod hemocyanin shows unusual differences[J]. Proteins, 1994, 19: 302-309.
    Masaaki A K S. The prophenoloxidase activating system in crayfish[J]. Comp Biochem Physiol, 1984, 77(1): 21-26.
    Moullac G L, Groumellec M L, Ansquer D, Froissard S, Levy P, Aquacop. Haematological and phenoloxidase activity changes in the shrimp Penaeus stylirostris in relation with the moult cycle: protection against vibriosis[J]. Fish Shellfish Immunol, 1997, 2: 227-234.
    Nagai T, Kawabata S. A link between blood coagulation and prophenol oxidase activation in arthropod host defense[J]. J. Biol. Chem.,2000, 275, 29264-29267.
    Nagai T, Osaki T, Kawabata S. Functional conversion of hemocyanin to phenoloxidase by horseshoe crab antimicrobial peptides[J]. J. Biol. Chem., 2001, 276, 27166-27170.
    Nickerson K W, Van Hold K E. A comparison of molluscan and arthopod hemocyanin in circular dichroism and absorption spectra[J]. Com Biochem Physiol, 1971, 39B: 855-872.
    O Martínez-Alvarez, C Gómez-Guillén, Pilar Montero. Presence of hemocyanin with diphenoloxidase activity in deepwater pink shrimp (Parapenaeus longirostris) post mortem[J]. Food Chemistry, 2008, 107 : 1450-1460.
    Olianas A, Sanna M T, Messana I, et al. The hemocyanin of shamefaced crab Calappa granulata: structural-functional characterization. J Biochem,2006, 139: 957-966.
    Paul R, Pirow R. The physiological significance of respiratory proteins in invertebrates[J]. Zoology, 1998, 100: 319-327.
    Perazzolo L M, Gargioni R, Ogliari P, et a1. Evaluation of some hematoimmunological parameters in the shrimp Farfantepenaeus panlensis submitted to environmental and physiological stress[J].Aquaculture, 2002, 214: 19-33.
    Perdomo Morales R, Montero Alejo V, Perera E, et a1. Phenoloxidase activity in the hemolymph of the spiny lobster Panulirus argus[J]. Fish and Shellfish Immunology, 2007, 23: 1187-1195.
    Pizzuto M, Hirst R G. Classification of isolates of Vibrio harveyi virulent to Penaeus monodon larvae by protein profile analysis and M13 DNA fingerprinting[J]. Diseases of Aquatic Organisms, 1995, 32: 151-155.
    Pless D D, Aguilar M B, Falcon A, et al. Latent phenoloxidase activity and N-terminal amino acid sequence of hemocyanin from Bathynomus giganteus, a primitive crustacean[J]. Arc Biochem Biophys, 2003, 409: 402-410.
    Premruethai S ,Sirawut K, Rath P, et al. Immune-related gened discovery by expressed sequence tags analysis of haemocytes in the Vibrio harvery infected Penaeus monndon[A]. World Aquac Soc[C], 2002 , 743.
    Robertson PAW, Calderon J, CarreraL, et a1. Experimental Vibrio harveyi infections in Penaeus vannamei larvae[J]. Diseases of Aquatic Organisms, 1998, 32: 151-155.
    Rtal A, Truchot J P. Haemolymph Transport and Tissue Accumulation of Exogenous Copper in the Shore Crab, Carcinus maenas[J]. Marine Pollution Bulletin, 1996, 32(11): 802-811.
    S?derh?ll K.β-1, 3-glucan enhancement of protease activity in crayfish hemocyte lysate[J]. Comp Biochem Physiol, 1983, 74, (2): 221-224.
    S?derh?ll K, Smith V J. The prophenoloxidase activating cascade as a recognition and defencesystem in arthropods, in humoral and cellular immunity in arthropods[M]. New York: John Wiley&Sons, 1996, 251-285.
    S?derh?ll K, Unestam T. Activation of serum prophenoloxidase in arthropod immunity: The specificity of cell wall glucan activation and activation by purified fungal glycoproteins of crayfish phenoloxidase [J]. Can J Microbiol, 1979, 25: 406-414.
    S?derh?ll K. Fungal cell wallβ-1, 3-glucan induces clotting and phenoloxidase attachment to foreign surface of crayfish hemocyte lysate [J]. Dev Comp Immunol, 1981, 5: 565-673.
    Salvato B, Sanamaria M., Beltramini, M., Alzuet, G, Casella, L. The enzymatic properties of Octopus vulgaris hemocyanin: o-diphenol oxidase Activity [J] . Biochemistry, 1998, 37: 14065-14077.
    Sellos D, Lemoine S, van Wormhoudt A. Molecular cloning of hemocyanin cDNA from Penaeus vannamei (Crustacea, Decapoda): structure, evolution and physiological aspects[J]. FEBS Lett 1997, 407(2): 153-158.
    Sequeira T, Cerenius L. Flow cytometric analysis of molt-related changes in haemocyte type in male and female Penaeus japonicus [J]. Biol Bull, 1995, 189: 376-380.
    Smith V J, S?derh?ll K. Induction of degranulation and lysis of haemocytes in the freshwater crayfish, Astacus astacus by components of the prophenoloxidase activating system in vitro[J]. Cell Tissue Res, 1983, 233(2): 295-303.
    Solomon E, Sundaram U, Machonkin T. Multicopper oxidases and oxygenases[J]. Chem Rev, 1996, 96: 2563-2605.
    Solomon E, Tuczek F, Root D, et al. Spectroscopy of binuclear dioxygen complexes[J]. Chem Rev, 1994, 94: 827-856.
    Sribunyalucksanak I. Activation of prophenoxoxidase agglutin in and antibacterial activity in haemolymph of the black tiger praw (P. mondon) by immunostimulants[J]. Fish Shellfish Immunol, 1999, 9: 21-30.
    Sugumaran M, Nellaiappan K, Amaratunga C, Cardinale S, Scott T. Insect melanogenesis. III. Metabolon formation in the melanogenic pathway-regulation of phenoloxidase activityy by endogenous dopachrome isomerase (decarboxylating) from Manduca sexta[J]. Arch Biochem Biophys., 2000 , 15, 378(2): 393-403.
    Sung H H, Yang Y L, Song Y L. Enhancement of microbicidalacity in the tiger-shrimp P.mondon via immunostimulation [J]. J Crust Biol, 1996, 16(2): 278-284.
    Tomita K, Ohbayasgi N O et al.. J. Antibiot, 1990, 43, 1601.
    Van Holde K, Miller K, Decker H. Hemocyanins and invertebrate evolution[J]. Biol. Chem., 2001, 276: 15563-15566.
    WANG F I, CHEN J C. Effect of salinity on the immune response of tiger shrimp Penaeus monodon and its susceptibility to Photobacterium damselae subsp.damselae[J]. Fish and Shellfish Immunology,2006,20(5):671-681.
    Wang Y C, Chang P S, Chen H Y. Tissue expressions of nine genes important to immune defence of the Pacific white shrimp Litopenaeus vannamei[J]. Fish and Shellfish Immunology, 2007, 23: 1161-1177.
    Zhang X B, Huang C H, Qin Q W. Antiviral properties of hemocyanin isolated from Penaeus monodon[J]. Antiviral Res , 2004, 61: 93-99.
    Zhi Ying Zhao, Zhi Xin Yin, Shao Ping Weng, et al. Profiling of differentially expressed genes in hepatopancreas of white spot syndrome virus-resistant shrimp (Litopenaeus vannamei) by suppression subtractive hybridization[J]. Fish and Shellfish Immunology , 2007, 22: 520-534.
    Zlateva T, Di Muro P, Salvato B, et a1. The o-diphenol oxidase activity of arthropod hemocyanin[J]. FEBS Lett, 1996, 384: 251-254.
    Zlateva T, Di Muro P, Salvato B, et a1. The o-diphenol oxidase activity of arthropod hemocyanin[J]. FEBS Lett, 1996, 384: 251-254.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700