用户名: 密码: 验证码:
珠峰自然保护区植被覆盖变化及沼泽湿地潜在退化风险评价
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究依托“中国-比利时”国际科技合作项目“西藏自然与文化遗产资源信息系统”(2008-2009,2008DFA11020),主要采用由搭载于EOS/Terra卫星上的中分辨率成像光谱仪(MODIS)获取并经过后期处理的250m分辨率归一化植被指数(NDVI)16日(d)合成数据(MOD13Q1)完成了珠峰自然保护区植被覆盖变化及沼泽湿地潜在退化风险评价。
     首先,利用2000~2009年10年的MODIS NDVI数据,基于每个像元的生长季NDVI峰值进行了像元水平的线性趋势分析,并参照珠峰地区自然区划图中南北坡区划,对珠穆朗玛峰自然保护区南坡和北坡的植被覆盖的空间分布和变化特征进行了研究。结果表明,(1)保护区内植被覆盖显著改善区域和轻微改善区域NDVI-Max的年平均增加率分别为3.06%和1.25%;显著退化区域和轻微退化区域NDVI-Max的年平均减少率分别为2.82%和1.09%。(2)2000~2009年,保护区南坡的植被覆盖整体上呈现上升趋势,22.59%的区域显著改善,19.05%的区域轻微改善,24.75%的区域保持稳定;北坡的植被覆盖整体上呈现下降趋势,19.5%的区域严重退化,24.43%的区域轻微退化,38.12%的区域保持稳定。(3)南坡有植被覆盖的8种土地利用类型中,山区旱地植被覆盖呈现退化趋势,其余土地利用类型都呈现上升趋势;北坡有植被覆盖的10种土地利用类型中,植被覆盖都呈现退化趋势。
     另外,选取珠峰自然保护区2009年全年23幅MODIS NDVI影像,采用基于傅立叶变换的HANTS算法去除云干扰并重构NDVI时间序列图像。根据研究区沼泽湿地与其它地物类型物候特征的差异,利用光谱角制图方法(SAM)获取了研究区2009年沼泽湿地的分布数据。研究区沼泽湿地共有2481.13km~2,占全区面积的6.88%;其中定日县分布最多,占沼泽湿地总面积的36.85%;其次为定结县、聂拉木县和吉隆县,分别占25.79%、24.5%和12.86%。针对研究区的特点,选用年平均气温的线性变化趋势为自然风险因子,基于距离衰减理论的居民点和道路影响为人为风险因子,对研究区沼泽湿地进行退化潜在风险评价,可划分为低风险、较低风险、一般风险、较高风险、高风险五个级别,各风险级别沼泽湿地面积占沼泽湿地总面积的比例分别为7.39%、13.61%、24.72%、31.43%、22.84%。
The Qomolangma National Nature Reserve was established on 18 March 1989, On March 2005, it was listed in the global biosphere protected area network. The domestic studies on its vegetation cover change are less,and marsh wetland is very important to the environment of this region.
     Based on the project that the international scientific and technological cooperation project between China and Belgium that The Nature and Cultural Heritage Resources Information System in Tibet (2008-2009, 2008DFA11020) , this paper accomplished two aspects of research. On the one hand, using MODIS NDVI data from 2000 to 2009, the spatial distribution and variation of vegetation cover on the south slope and the north slope in the Mt. Qomolangma Nature Reserve were studied based on the linear trend analysis on the growing season NDVI peak value of each pixel by pixel level. The results showed that: (1) For significantly improved area and slightly improved area of vegetation cover, average annual growth rates of NDVI-Max are 3.06% and 1.25% respectively; For significantly degraded area and slightly degraded area of vegetation cover, average annual reduction rates of NDVI-Max are 2.82% and 1.09% respectively. (2)The vegetation cover of the south slope of the Mt. Qomolangma Nature Reserve showed an increasing trend on the whole from 2000 to 2009, and 22.59% of research area improved greatly, 19.05% improved lightly, 24.75% kept stable; while in the north slope, the vegetation cover showed a decreasing trend on the whole, and 19.5% of research area degenerated greatly, 24.43% degenerated lightly, 38.12% kept stable; (3) Among the eight landuse types covered with vegetation in the south slope, the vegetation cover of dry farmland in mountain area showed a decreasing trend, and the others showed an increasing trend; while within the ten landuse types covered with vegetation in the north slope, all of the vegetation cover showed a decreasing trend.
     On the other hand, taking the Mt. Qomolangma National Nature Reserve as the study area, selecting all 23 MODIS NDVI images of 2009, using the HANTS algorithm based on Fourier transform to remove the interference of the cloud and reconstruct NDVI time series images. The Spectral angle mapper(SAM) was used to extract marsh wetland of the study area according to the different phenological characters between marsh wetland and other surface features. The area of marsh wetland is 2481.13km2, which account for 6.88% of total study area; Its distribution in Tingri was the most abundant, which account for 36.85% of the total marsh wetland area; followed by Dingjie, Nyalam and Geelong, the propotions are 25.79%, 24.5% and 12.86% respectively. According to the characteristics of the study area, we evaluated the potential degradation risk of marsh wetland in the study area by selecting annual mean temperature linear trend as natural risk factor, influences of settlements and roads as artificial risk factors which are based on distance decay theory. This paper divided general risk assessed results mainly into five grades, that is, the lowest risk, lower risk, moderate risk, higher risk, and the highest risk, the proportions of the total marsh wetland area in the study area are 7.39%, 13.61%, 24.72%, 31.43% and 22.84% respectively.
引文
[1]孙广友.中国湿地科学的进展与展望[J] .地球科学进展,2000, 15(6): 666-672.
    [2]陈桂琛,黄志伟,卢学锋,等.青海高原湿地特征及其保护[J] .湿地科学,2003, 1(2): 122-127.
    [3]朱万泽,钟祥浩,范建荣.西藏高原湿地生态系统特征及其保护对策[J] .山地学报, 2003, 21(增刊): 7-22.
    [4]王根绪,丁永健,王建,等.近15年来长江黄河源区的土地覆被变化[J] .地理学报, 2004, 59(2): 163-173.
    [5]张镱锂,李秀彬,傅小锋,等.拉萨城市用地变化分析[J] .地理学报, 2000, 55(4): 395-406.
    [6]西藏自治区人民政府办公厅关于加强我区湿地保护管理的通知.
    [7]贺桂芹,杨改河,冯永忠,等.西藏高原湿地生态系统结构及功能分析[J] .干旱地区农业研究, 2007, 25(3): 185-189.
    [8]裘善文,孙广友,夏玉梅.三江平原中东部沼泽湿地形成及其演化趋势的探讨[J] .湿地科学, 2008, 6(2): 148-159.
    [9]李林,李凤霞,朱西德,等.黄河源区湿地萎缩驱动力的定量辨识[J] .自然资源学报, 2009, 24(7): 1246-1255.
    [10]张树清,张柏,汪爱华.三江平原湿地消长与区域气候变化关系研究[J] .地球科学进展, 2001, 16(6): 836-841.
    [11]于伯华,吕昌河,吕婷婷,等.青藏高原植被覆盖变化的地域分异特征[J] .地理科学进展, 2009, 28(3): 391-396.
    [12]赵英时.遥感应用分析原理与方法[M] .北京:科学出版社. 2004: 372-375.
    [13] Stow D A, Hope A, McGuire D, et al. Remote sensing of vegetation and land-cover change in Arctic Tundra Ecosystems. Remote Sensing of Environment, 2004, 89(3): 281-308.
    [14] Olthof I, Pouliot D. Treeline vegetation composition and change in Canada's western Subarctic from AVHRR and canopy re?ectance modeling. Remote Sensing of Environment, 2010, 114(4): 805-815.
    [15] Hope A, Boynton W, Stow D, et al. Interannual Growth Dynamics of Vegetation in the Kuparuk River Watershed Based on the Normalized Difference Vegetation Index[ J ] . International Journal of Rem ote Sensing, 2003, 24 (17) : 3413-3425.
    [16]方精云,朴世龙,贺金生,等。近20年来中国植被活动在增强.中国科学C辑, 2003, 33(6):554-565.
    [17]朴世龙,方精云.最近18年来中国植被覆盖的动态变化[ J ] .第四纪研究, 2001, 21 (4) : 294-302.
    [18]丁明军,沈振西,张镱锂,等.青藏公路与铁路沿途1981年—2001年植被覆盖变化[J] .资源科学, 2005, 27(5): 128-133.
    [19]梁四海,陈江,金晓媚,等.近21年青藏高原植被覆盖变化规律[J] .地球科学进展, 2007, 22(1): 33-40.
    [20]于伯华,吕昌河,吕婷婷,等.青藏高原植被覆盖变化的地域分异特征[J] .地理科学进展, 2009, 28(3): 391-396.
    [21]张戈丽,欧阳华,张宪洲,等。基于生态地理分区的青藏高原植被覆被变化及其对气候变化的响应,地理研究, 2010, 29(11):2004-2016.
    [22] Johnson R M, Barson M M. Remote-sensing of Australian wetlands—an evaluation of Landsat TM data for inventory and classification.Aust J Mar Freshw Res, 1993, 44(2): 235-252.
    [23]张柏.遥感技术在中国湿地研究中的应用.遥感技术与应用, 1996, 11: 68-711.
    [24]刘红玉,吕宪国.三江平原湿地景观生态制图分类系统研究.地理科学, 1999, 19: 432-436.
    [25] Toyra J, Pietroniro A. Towards operational monitoring of a northern wetland using geomatics-based techniques. Remote Sens Environ, 1997, (2): 174-191.
    [26] Wright C, Gallant A. Improved wetland remote sensing in Yellowstone National Park using classification trees to combine TM imagery and ancillary environmental data. Remote Sens Environ, 2007, 107(4): 582-605 .
    [27]牛振国,宫鹏,程晓,等.中国湿地初步遥感制图及相关地理特征分析.中国科学D辑:地球科学, 2009, 39: 188-203.
    [28]宫鹏,牛振国,程晓,等.中国1990和2000基准年湿地变化遥感,中国科学D辑:地球科学, 2010, 40(6): 768-775.
    [29] Japhet J. Kashaigili, Boniface P. Mbilinyi, Matthew Mccartney, et al. Dynamics of Usangu plains wetlands: Use of remote sensing and GIS as management decision tools[R] . Physics and Chemistry of the Earth, 31 (2006): 967-975.
    [30]杨帆,赵冬至,索安宁.双台子河口湿地景观时空变化研究.遥感技术与应用, 2008, 23(1): 51-56.
    [31]杨帆,赵冬至,索安宁,等.中巴资源卫星在双台子河口湿地景观格局变化研究中的应用.海洋环境科学, 2008, 27(6): 641-646.
    [32] Pieter S A, Beck C, Kjellarild H, etal. 2006. Improvedmonitoring of vegetation dynamics at very high latitudes: A newmethod using MODIS NDVI[J] . Remote Sensing of Environment, 100: 321-324.
    [33] Geerken R, Zaitchik B, Evans J P. 2005. Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure[J] . International Journal of Remote Sensing, 26(24): 5535-5554.
    [34] Geerken R, Batikha N, Celis D, et al. 2005. Differentiation of rangeland vegetation and assessment of its status: field investigations and MODIS and SPOT VEGETATION data analyses[J] . International Journal of Remote Sensing, 26(20): 4499-4526.
    [35] Evans J P, Geerken R. 2006. Classifying rangeland vegetation type and coverage using a Fourier component based similarity measure[J] . Remote Sensing of Environment, 105: 1-8.
    [36]那晓东,张树清,李晓峰,等. MODISNDVI时间序列在三江平原湿地植被信息提取中的应用.湿地科学, 2007, 5(3): 227-236.
    [37]马龙,刘闯. MODIS在三江平原湿地分布研究中的应用[J] .地理与地理信息科学, 2006, 22(3): 57-60.
    [38]次旦伦珠.珠穆朗玛峰自然保护区概况[J] .中国藏学, 1997, 1: 3-22.
    [39]李渤生.珠穆朗玛峰自然保护区的初步评价[J] .自然资源学报, 1993, 8(2): 97-104.
    [40]郑度,胡朝炳,张荣祖.珠穆朗玛峰地区的自然分带[M] .珠穆朗玛峰地区科学考察报告1966-1968(自然地理)[M] .北京:科学出版社, 1975: 198-201.
    [41]马飞,李景吉,彭培好,等.珠穆朗玛峰国家自然保护区南北坡植被覆盖变化研究[J] .地理科学进展, 2010, 29(11): 1427-1432.
    [42]中国科学院青藏高原综合科学考察队.青藏高原科学考察丛书—西藏植被[M] .北京:科学出版社, 1988: 251-257.
    [43]李建平,张柏,张泠,等.湿地遥感监测研究现状与展望[J] .地理科学进展, 2007, 26(1):33-43.
    [44]阮仁宗,冯学.基于多时相遥感和GIS技术的湿地识别研究[J] .遥感信息, 2005, (2):20-24.
    [45]许辉熙,何政伟,但尚铭,等.基于EOS/MODIS的若尔盖高原湿地定量遥感研究[J] .冰川冻土, 2007, 29(3):450-455.
    [46] B Zhao, Y Yan, H Guo, M He, et al. Monitoring rapid vegetation succession in estuarine wetland using time series MODIS based indicators:An application in the Yangtze River Delta area[J] , Ecol. Indicat, 2009, 9(2):346-356.
    [47]刘玉洁,杨忠东,等.MODIS遥感信息处理原理与算法[M] .北京:科学出版社.2001.
    [48]杨元合,朴世龙.青藏高原草地植被覆盖变化及其与气候因子的关系[J] .植物生态学报, 2006, 30(1): 1-8.
    [49]于信芳,庄大方.基于MODISNDVI数据的东北森林物候期监测[J] .资源科学, 2006, 28(4): 112-117.
    [50]王丹,姜小光,唐伶俐,等.利用时间序列傅立叶分析重构无云NDVI图像[J] .国土资源遥感, 2005, 2: 29-32.
    [51] Verhoef. W Application of Harmomic Analysis of NDVI Time Series(HANTS)[A] . In: Azzali S, Menenti M(eds.) Fourier analysis of temporal NDVI in the Southen African and American continents[R] . Wageningen( The Netherlands), DLO Winand Staring Centre, 1996.
    [52]赵松桥,孙惠南,黄荣金,等.现代自然地理[M] .北京:科学出版社, 1988.
    [53]孙和平,罗少聪.中国及其邻区地表气象数据预处理和网格化数值结果分析[J ] .地壳形变与地震, 1998, 18 (3) : 51-56.
    [54]周锁全,缪起龙,吴战平.山区平均气温细网格插值方法的比较[J ] .南京气象学院学报, 1994, 17(4) : 488-492.
    [55]任传友,于贵瑞,刘新安,等.东北地区热量资源栅格化信息系统的建立与应用[J ] .资源科学, 2003, 25 (1) : 66-71.
    [56]廖顺宝,李泽辉.基于GIS的定位观测数据空间化[J ] .地理科学进展, 2003, 22(1): 87-93.
    [57]中山大学,等编.自然地理学[M] .北京:人民教育出版社, 1978.
    [58]廖顺宝,李泽辉.气温数据栅格化中的几个具体问题[J] .气象科技, 2004, 32(5): 352-356.
    [59]廖顺宝,李泽辉,游松财.气温数据栅格化的方法及其比较[J] .资源科学, 2003, 25(6): 75-80.
    [60]张继承,姜琦刚,李远华,等.基于RS/GIS的西藏地区湖泊变化动态监测及气候背景[J] .地球科学与环境学报, 2008, 30(1): 87-93.
    [61]聂勇,张镱锂,刘林山,等.近30年珠穆朗玛峰国家自然保护区冰川变化的遥感监测[J] .地理学报, 2010, 65(1): 13-28.
    [62]荆凤,陈建平.矿化蚀变信息的遥感提取方法综述[J] .遥感信息, 2005.2, 62-65.
    [63] Gregory D.Distance decay[A] .In: Johnston R J, Gregory D, Smith DM(ed). The Dictionary of Human Geography(2ndEdn)[C] .Oxford: Blackwell, 1988.110-111.
    [64] Eldridge J D, Jones J P.Warpedspace: a geography of distance decay[J] .Professional Geographer, 43: 500-511.
    [65]张捷,都金康,周寅康,等.自然观光旅游地客源市场的空间结构研究—以九寨沟及比较风景区为例[J] .地理学报, 1999, 54(4): 357-364.
    [66]王雪梅,李新,马明国.干旱区内陆河流域人口统计数据的空间化—以黑河流域为例[J] .干旱区资源与环境, 2007, 21(6): 39-47.
    [67]刘小平,黎夏,叶嘉安.基于多智能体系统的空间决策行为及土地利用格局演变的模拟[J] .中国科学D辑地球科学2006, 36(11): 1027-1036.
    [68]章家恩,徐琪.道路的生态学影响及其生态建设[J] .生态学杂志, 1995, 14(6): 74-77.
    [69]吴群,温修春,唐焱,等.模型法在农用地基准地价评估中的应用—以江苏省泰兴市为例[J] .资源科学, 2004, 26(5): 68-73.
    [70]吴群,温修春,唐焱,等.模型法在农用地基准地价评估中的应用—以江苏省泰兴市为例[J] .资源科学, 2004, 26(5): 68-73.
    [71]吴晋峰,包浩生.旅游流距离衰减现象演绎研究[J] .人文地理, 2005, 2: 62-65.
    [72] Shabanov N, Zhou L, Knyazikhin Y, et al. Analysis of inter-annual changes in northern vegetation activity observed in AVHRR data From 1981 to 1994[J] . IEEE Transactions on Geoscience and Remote Sensing, 2002, 40(1): 115-130.
    [73]宋怡,马明国.基于SPOT VEGETATION数据的中国西北植被覆盖变化分析[J] .中国沙漠, 2007, 1(1): 89-93.
    [74]杨续,张镱锂,张玮,等.珠穆朗玛峰地区近34年来气候变化[J] .地理学报, 2006, 61(7): 687-696.
    [75]西藏自治区人民政府办公厅贯彻实施国务院关于完善退耕还林政策通知的意见.区政府办公厅文件, 2008.1.9.
    [76]赵魁义,王德斌,宋海远.西藏沼泽的初步研究.见:陈宜瑜主编.中国沼泽研究, 1988, 227-235.
    [77]罗磊,青藏高原湿地退化的气候背景分析[J] .湿地科学, 2005, 3(3): 190-199.
    [78]王长科,王跃思,张安定,等.若尔盖高原湿地资源及其保护对策[J] .水土保持通报, 2001, 21(5): 20-40.
    [79]张镱锂,李秀彬,傅小锋,等.拉萨城市用地变化分析[J] .地理学报, 2000, 55(4): 395-406.
    [80]王景升,白凤来,刘德晶,等.西藏生态补偿问题及对策[J] .林业资源管理, 2007, (6): 21-24.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700