用户名: 密码: 验证码:
海平面变化及其对东中国海风暴潮的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文分析西北太平洋区域海平面变化特征,并研究典型区域(黑潮延伸体海域和东中国海)海平面变化与海流的关系。结合IPCC AR4的A1B气候情景下21世纪东中国海海平面变化,利用Ecomsed数值模式,分析区域海平面变化对东中国海风暴潮的影响。
     西北太平洋海平面具有显著的季节变化、年际变化(3-5年)以及长期上升趋势(3.9 mm/yr)。西北太平洋海平面变化区域特征明显,黑潮及其延伸体流附近海域的海平面变化较显著。黑潮延伸体海域(Kuroshio Extension,简称KE)海平面变化的第一模态是季节模态,第二模态是黑潮大弯曲模态,存在27个月的准两年振荡。KE区海平面的年际变化与厄尔尼诺事件和海流变化密切相关。KE上游区,海平面变化受黑潮大弯曲影响显著。2002-04年的黑潮大弯曲期间,海平面与Nino3指数的相关系数为0.74。黑潮呈弯曲路径时,主轴南侧海平面较高,两侧海平面梯度大;非弯曲期间急流主轴偏南,主轴南侧海平面较低。东中国海海平面变化中季节和准两年变化较显著,东海黑潮流域海平面与东海黑潮的地转效应和Rossby波密切相关。在黑潮流量大的年份(1995-98),东海黑潮流域海平面与黑潮地转效应关系密切。2002-06年海平面主要为正异常,东海黑潮流量小且强度较弱,此时Rossby波引起海平面正异常西传至东海黑潮海域,对该区域海平面影响显著。
     A1B气候情景下,21世纪区域海平面变化具有显著的季节、年际及年代际变化。2060年前后,西北太平洋海平面线性趋势由2.7 mm/yr的上升速率变为以4.8 mm/yr的速率下降,2060年海平面达到21世纪最大值。海平面4-8年的年际变化在世纪中期较为显著;21世纪初和世纪末具有显著的2-3年的变化周期。黑潮延伸体海域和东中国海海平面在21世纪中期之前,海平面持续上升;其中在2020年左右、2050-60年期间分别出现较高海平面;之后东中国海平面变化平缓,黑潮延伸体海平面显著下降。
     21世纪海平面变化对风暴潮的增减水过程有显著影响。在A1B气候情景海平面变化影响下,0807#台风来临前夕,风暴潮增水发生在落潮期间;台风到达所在海域时,增水发生在高潮时刻。17个台风个例模拟结果表明,海平面变化可引起10cm的增减水差异,风暴增水提前将延长风暴潮增水时段;海平面变化影响下,增减水的变化特征可能与半日潮流的转向有关。并且,台风强度越大,海平面变化对风暴潮增水强度的影响越明显。在闽浙沿岸风暴潮引起的增水最大,辽东半岛沿岸次之。A1B气候情景下21世纪海平面变化对海岸带脆弱性具有很大影响。苏北浅滩及环渤海海岸带脆弱性将增强,华北平原、苏北平原将变为更脆弱的区域。21世纪的校核水位在东中国海将会增大,闽浙沿岸校核水位最高,可达5m左右;其次是辽东半岛东南沿岸。
Sea level variation in the North Pacific Ocean during 1992 to 2008 was analyzed by the AVISO altimeter data, and their relationship with the Kuroshio current in representative regional area such as Kuroshio Extension (KE) and East China Sea (ECS) was given in this paper. Based on IPCC AR4 A1B scenario, we forecasted the sea level variation in 21~(st) century using CCSM model result and analyzed the effects of sea level variations on the storm surge along the coast of the East China Sea using a three-dimensional high-resolution hydrodynamic model (Ecomsed).
     Inter-annual sea level variation (3-5 year) and the long-term variation with the rising rate of 3.9 mm/yr are obvious in the North Pacific Ocean. Sea level in the North Pacific Ocean varies noticeably along Kuroshio area, such as Kuroshio Extension area and East China Sea. The second Empirical Orthogonal Functions (EOF) of the sea level variation in the KE is the Kuroshio meander mode with 27month quasi-biannual period. The sea level inter-annual variation in KE area relates to El Ni?o and Kuroshio current closely. The correlation coefficient between sea level inter-annual variation and El Ni?o is 0.74 in well-advanced meander year of 2002-2004. In up-stream area, the sea level variation with inter-annual period is affected by Kuroshio meander significantly. In well-advanced meander year, the sea level is higher in south of KE path, and the difference between the two sides of jet is larger. During no-meander period, the sea level difference between the two sides of jet is small, while KE weakens with the Kuroshio path migrating southward. In ECS, the sea level varies with obvious inter-annual variation and seasonal variation. The Rossby wave and geostrophic adjustment of Kuroshio are important factors on the variability of the sea level in Kuroshio area in the ECS. When the transport of the Kuroshio is large such as 1995-98, the sea level has a good connection with the Kuroshio current. While the transport of PN is smaller (2002-06), the sea level variation is concerned with the Rossby waves which carry the positive sea level from the interior ocean.
     The sea level in the 21~(st) century has obviously seasonal, inter-annual and inter-decadal variability under IPCC AR4 A1B scenario. Before 2060’s, the sea level rise with 2.7 mm/yr, and fall with 4.8 mm/yr after then. The sea level reaches the peak in 2060’s. The inter-annual variability of 4-8 year is significant in the middle of 21~(st) century, and at the beginning and the end of the 21~(st) century the sea level varies with inter-annual period of 2-3 year. The sea level rises before 2060’s at KE and ECS area, and it maintains in high level during 2050-2060.And then, the sea level varies smoothly in the East China Sea, but in KE area the sea level declines remarkably.
     Sea level variations under SRES A1B scenario play a significant role on storm surge evolution in the East China Sea. The“SRES A1B scenario storm surge”combined with the relevant monthly sea level in the 2060 year in 21~(st) century was simulated by 1989-2008 typhoon cases. Before 0807# typhoon arrived, storm set-up occurred in tide ebbing, and increased to high value around the higher tidal water (HTW) until the typhoon system covered the gauges. Residual elevation difference performs 10 cm in the three tide gauges. The influence of sea level variations maps the geographical variability. The maximal residual elevation in the 21~(st) century would occur along the Fujian and Zhejiang province coast. The maximal residual elevation and check water levels change with the effect of the sea level variations. The maximal residual elevation will increase along the northern coastline of the Jiangsu province, and areas surrounding Bo Sea, where would be the more vulnerable area. The check water in the 21~(st) century became higher as sea level varying, especially in Zhejiang and Fujian province coast could reach 4.5 m.
引文
1. Blumberg A F. A primer for ECOMsed, version 1.3. Mahwah, N J,HydroQual Inc. 2002.
    2. Bo Qiu, Shuiming Chen. Decadal Variability in the Large-Scale Sea Surface Height Field of the South Pacific Ocean: Observations and Causes, Journal of Physical Oceanography[J], 2006, 36: 1751-1762.
    3. Cabanes C., A. Cazenave, C. L. Provost, Sea level change from Topex/Poseidon Altimetry for 1993-1999 and possible warming of the southern ocean. Geophysical Research Letters[J]. 2001, 28(1):9-12.
    4. Carton, J.A., and B.S. Giese. A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon. Wea. Rev [J], 2008, 136, 2999-3017.
    5. Cazenave A., A. Lombard,et al., Present-day sea level rise: A synthesis. C. R. Geoscience[J], 2008,340:761-770.
    6. Cazenave A., K. Dominh, M.C. Gennero, B. Ferret. Global mean sea level changes observed by TOPER/Poseidon and ERS-1. Phys. Chem. Earth. [J], 1998, 23(9-10):1069-1075.
    7. Chambers D. P., J. L. Chen, R. S. Nerem, and B. D. Tapley, Interannual mean sea level change and the Earth water mass budget. Geophysical Research Letters[J], 2000, 27:3073-3076.
    8. Chambers D.P., C.A.Mehlhaff, T.J. Urban, R.S.Nerem. Analysis of interannual and low-frequency variability in global mean sea level from altimetry and tide gauges. Physics and Chemistry of the Earth[J], 2002(27): 1407-1411.
    9. Charmers D. P., C. A. Mehlhaff, T. J. Urban, and D. Fujii. Low-frequency variations in global mean sea level: 1950-2000. Journal o Geophysical Research[J], 2002,107(C4):3026:3035
    10. Chen J. L., C. K. Shum, and C. R. Wilson, et al.. Seasonal sea level change from Topex/Poseidon observation and thermal contribution. J Geodesy[J], 2000,73:638-647.
    11. Chen J. L., C. R. Wilson, B. D. Tapley,X. G Hu. Thermosteric effects on interannual and long-term global mean sea level changes. J Geodesy [J], 2006, 80: 240-247.
    12. Chen J.L., C. R. Wilson, B. D. Tapley, et al., Contributions of Hydrological processes to sea level change. Physics and Chemistry of}the Earth[J]. 2002, 27:1439-1443.
    13. Climate Change 2001:The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change [Houghton, J.T.,Y Ding, D.J. Griggs, M. Noguer, P.J. van der Linden, X. Dai, K. Maskell, and C.A. Johnson (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA,881pp.
    14. Du L, Li L, Li PL, Zuo JC, Chen MX.The Calculation of Check Water Levels in the Jiaozhou Bay and Adjacent Sea.Proceeding of the thirteenth International Society of Offshore and Polar Engineers (ISOPE-2007) Conference. Lisbon, Portugal, July 1-6, 2007.
    15. Du L, Zuo JC, Li L, Li PL. The Response of Tidal Wave and Engineering Water Level to Long-Term Sea Level Variation in the Jiaozhou Bay. Proceeding of the fifteenth International Society of Offshore and Polar Engineers (ISOPE-2000 Conference. Korea, Seoul, 2005, June 19-24, pp 713-719.
    16. G Ramillien, S. Bouhours, A. Lombard, A. Cazenave, F. Flechtner, R. Schmidt. Land water storage contribution to sea level from GRACE geoid data over 2003-2006. Global and Planetary Change[J], 2008, 60:381-392.
    17. Gao Zq Han SZ, Liu KX, Zheng YX, Yu HM.Numerical Simulation of the Influence of Mean Sea Level Rise on Typhoon Storm Surge in the East China Sea. Marine ScienceBulletln[J], 2008,Vo1.10, No.2 pp
    18. Gordon A. L., Claudia F. Giulivi. Pacific decadal oscillation and sea level in the Japan/Eastsea. Deep-Sea Research [J], 2004(51):653-663
    19. Jelesnianski C P. A numerical computation of storm tides induced by a tropical storm impinging on a continental shelf [J].Mon. Wea. Rev., 1965, 93 (16): 343-358.
    20. John A. Church ,Neil J. White, Thorkild Aarup, W. Stanley Wilson, Philip L. Woodworth, Catia M. Domingues, John R. Hunter, Kurt Lambeck. Understanding global sea levels: past, present and future. Sustain Sci. [J], 2008, 3:9-22.
    21. Johns W E, Lee T N, Zhang D. The Kuroshio east of Tai wan: moored transport observations fromthe WOCE PCM-1 array. JPhys oceanography[J], 2001, 31:1031-1053.
    22. Kennelly, M., K. Donohue, et al. Inverted echo sounder data report: Kuroshio Extension System Study (KESS) April 2004 to July 2006. GSO Technical Report 2008-02, University of Rhode Island.
    23. Latif M.. Dynamics of interdecadal variability in coupled ocean-atmosphere models. J. Climate[J], 1998 11:602-624.
    24. Lombard, A., A. Cazenave, K. DoMinh, C. Cabbanes, and R. S. Nerem. Thermosteric sea level rise for the past 50 year; comparison with tide gauges and inference on water mass contribute. Global Planetary Change[J], 2005, 48: 303-312.
    25. Lv XQ, Zhang JC. Numerical Study on Spatially Varying Bottom Friction Coefficient of A2D Tidal Model with Adjoint Method. Continental ShelfResearch[J]. 2006, 26:1905-1923.
    26. Meehl, GA., T.F. Stocker, W.D. Collies, P. Friedlingstein, A.T. Gaye, J.M. Gregory, A. Kitoh, R. Knutti, J.M. Murphy,A. Noda, S.C.B. Raper, LG Watterson, A.J. Weaver and Z.-C. Zhao, 2007: Global Climate Projections. In: Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Solomon, S.,D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor and H.L. Miller (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    27. Minster J. F., A. Cazenave, Y. V Serafini, F. Mercibr, et al., Annual cycle in mean sea level from Topex-Poseidon and ERS-1:inference on the global hydrological cycle. Global and Planetary Change[J], 1999, 20:57-66.
    28. National Assessment Report of Climate Change committee. China's National Assessment Report of Climate Change. Science Press. 422 pp. 2007.
    29. Qiu B, and Chen S, Variability of the Kuroshio extension Jet, recirculation gyre and mesoscale eddies on decadal time scale. Journal of Physical Oceanography[J], 2005,35 (11): 2090-2103.
    30. Qiu B. Mean flow and variability in the Kuroshio Extension from Geosat altimeter data. J Geophys. Res. [J], 1991, 96(18): 491-507.
    31. Qiu B. Recirculation and seasonal change of the Kuroshio Extension from altimetry observations. J GeophyS. nes. [J],1992, 97(17): 801-811.
    32. Woodworth, PL, and DL Blaclman. Changes in Extreme High Waters at Liverpool Since 1768. Int. J. Climatol. [J], 2002, 22(6):697-714.
    33. Yan M., J.C. Zuo, L. Du, et al.. Sea level variation/change and steric contributions in the East China Sea. ISOPE-2007 conference, 2007:2377-2382.
    34. Zuo juncheng, Zhang jiangli, Du ling, Li peiliang, and Li lei. Global sea level change and thermal contribution. J.Ocean Univ.china[J], 2009, 8(1):1-8.
    35.蔡榕硕.源地黑潮及其上下游流量的变化特征.台湾海峡[J],2009,28(3):299-307.
    36.蔡怡,李海.全球变暖背景下最近40年太平洋海面高度和热容量变化数值模拟.热带海洋学报[J],2006,25(4)14-19.
    37.陈红霞,袁业立,华峰.东海黑潮卞段G-PN断面的多核结构.科学通报[J], 2006,51(6):730-737.
    38.陈美香.北太平洋、东海黑潮及黑潮延伸体海域海平面变化机制研究.[博士学位论文].中国海洋大学,2009.
    39.陈奇礼,许时耕.海平面上升后粤西沿岸潮汐的变化.海洋通报[J],1995,14(1):7-10.
    40.崔承琦,施建堂.近10年来我国沿海海面变化和风暴潮.海洋通报[J],2001,20(4):40. 20-25
    41.杜凌.全球海平面变化规律及中国海特定海域潮波研究.[博士学位论文].中国海洋大学.2005.
    42.端义宏,朱建荣,秦曾灏,龚茂珣.一个高分辨率的长江口台风风暴潮数值预报模式及其应用.海洋学报[J], 2005,27(3):11-19
    43.冯士筰,李凤岐,李少菁.海洋科学导论.北京,高等教育出版社,1999.170-171.
    44.高理,刘玉光,荣增瑞.黑潮延伸区的海平面异常和中尺度涡的统计分析.海洋湖沼通报[J],2007,27(1):14-23.
    45.谷德军,王东晓,袁金南.黑潮输送的异常及其与大尺度海气相互作用的关系.[J]热带海洋学报[J],2004,23(6):30-39.
    46.韩飞,杜凌,李杰,陈美香.黑潮延伸体海域海平面变化及其与比容变化的关系.海洋湖沼通报,2010.(已接收)
    47.何朗,周薇,张应碧,赵韫.未来海平面上升的预测及影响.数学杂志[J],2008,28(5):555-558.
    48.黄刚,屈侠.IPCC AR4模式中夏季西太平洋副高南北位置特征的模拟.大气科学学报[J],2009,32(3):351-359.
    49.黄立文,邓健.黄、东海海洋对于台风过程的响应.海洋与湖沼[J],2007,38(3):246-252.
    50.贾英来,刘秦玉,刘伟,林霄沛.台湾以东黑潮流量的年际变化特征.海洋与湖沼[J].2004,35(6):507-511.
    51.江文胜,孙文心.地形变化对青岛地区风暴潮灾影响的一次模拟.海洋预报[J].2002,19(1):97-104
    52.李博,周天军.基于IPCC A1B情景的中国未来气候变化预估:多模式集合结果及其不确定性.气候变化研究进展[J],2010,6(4):270-276.
    53.李坤平,房宪英,刘丽惠,曾宪模.海平面变化对黑潮变异的响应.黄渤海海洋[J],1993,11(4):3
    54.李丽娟.台湾以东海平面高度和海表温度的变化特征与机制.[博士学位论文].中国海洋大学,2009.
    55.林丽茹,胡建宇.太平洋东南海域海面高度的季节及年际变化特征.海洋科学[J],2005,29(2):37-42.
    56.刘杜鹃.相对海平面上升对中国沿海地区的可能影响.海洋预报[J].2004,21(2):21-28
    57.潘家炜,袁业立,郑全安.用Geosat高度计数据观测黑潮流系的低频变化——季节及年际变化分析.海洋学报[J],1997,19(4):51-62.
    58.王伟,宋志尧,路卫国,胡明.海平面上升对海岸潮差响应的理论分析.海洋工程[J],2008,26(3):94-104.
    59.王元培.137°E断面北赤道流、黑潮变异和黑潮大弯曲的关系.海洋科学[J],1995,1:
    60.温娜,刘秦玉.台湾以东黑潮流量变异与冬季西北太平洋海气相互作用的影响.海洋与湖沼[J] .2006, 37(3):264-270.
    61.翁学传,张肩龙,杨玉玲等.东海黑潮热输送及黄淮平原区汛期降水的关系.海洋与湖51(6):730-737.
    38.陈美香.北太平洋、东海黑潮及黑潮延伸体海域海平面变化机制研究.[博士学位论文].中国海洋大学,2009.
    39.陈奇礼,许时耕.海平面上升后粤西沿岸潮汐的变化.海洋通报[J],1995,14(1):7-10.
    40.崔承琦,施建堂.近10年来我国沿海海面变化和风暴潮.海洋通报[J],2001,20(4):40. 20-25
    41.杜凌.全球海平面变化规律及中国海特定海域潮波研究.[博士学位论文].中国海洋大学.2005.
    42.端义宏,朱建荣,秦曾灏,龚茂珣.一个高分辨率的长江口台风风暴潮数值预报模式及其应用.海洋学报[J], 2005,27(3):11-19
    43.冯士筰,李凤岐,李少菁.海洋科学导论.北京,高等教育出版社,1999.170-171.
    44.高理,刘玉光,荣增瑞.黑潮延伸区的海平面异常和中尺度涡的统计分析.海洋湖沼通报[J],2007,27(1):14-23.
    45.谷德军,王东晓,袁金南.黑潮输送的异常及其与大尺度海气相互作用的关系.[J]热带海洋学报[J],2004,23(6):30-39.
    46.韩飞,杜凌,李杰,陈美香.黑潮延伸体海域海平面变化及其与比容变化的关系.海洋湖沼通报,2010.(已接收)
    47.何朗,周薇,张应碧,赵韫.未来海平面上升的预测及影响.数学杂志[J],2008,28(5):555-558.
    48.黄刚,屈侠.IPCC AR4模式中夏季西太平洋副高南北位置特征的模拟.大气科学学报[J],2009,32(3):351-359.
    49.黄立文,邓健.黄、东海海洋对于台风过程的响应.海洋与湖沼[J],2007,38(3):246-252.
    50.贾英来,刘秦玉,刘伟,林霄沛.台湾以东黑潮流量的年际变化特征.海洋与湖沼[J].2004,35(6):507-511.
    51.江文胜,孙文心.地形变化对青岛地区风暴潮灾影响的一次模拟.海洋预报[J].2002,19(1):97-104
    52.李博,周天军.基于IPCC A1B情景的中国未来气候变化预估:多模式集合结果及其不确定性.气候变化研究进展[J],2010,6(4):270-276.
    53.李坤平,房宪英,刘丽惠,曾宪模.海平面变化对黑潮变异的响应.黄渤海海洋[J],1993,11(4):3
    54.李丽娟.台湾以东海平面高度和海表温度的变化特征与机制.[博士学位论文].中国海洋大学,2009.
    55.林丽茹,胡建宇.太平洋东南海域海面高度的季节及年际变化特征.海洋科学[J],2005,29(2):37-42.
    56.刘杜鹃.相对海平面上升对中国沿海地区的可能影响.海洋预报[J].2004,21(2):21-28
    57.潘家炜,袁业立,郑全安.用Geosat高度计数据观测黑潮流系的低频变化——季节及年际变化分析.海洋学报[J],1997,19(4):51-62.
    58.王伟,宋志尧,路卫国,胡明.海平面上升对海岸潮差响应的理论分析.海洋工程[J],2008,26(3):94-104.
    59.王元培.137°E断面北赤道流、黑潮变异和黑潮大弯曲的关系.海洋科学[J],1995,1:
    60.温娜,刘秦玉.台湾以东黑潮流量变异与冬季西北太平洋海气相互作用的影响.海洋与湖沼[J] .2006, 37(3):264-270.
    61.翁学传,张肩龙,杨玉玲等.东海黑潮热输送及黄淮平原区汛期降水的关系.海洋与湖沼[J],1996,27(3):237-245

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700