用户名: 密码: 验证码:
塔里木盆地中央隆起区鹰山组层序地层及储集体地质特征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
论文以塔里木盆地下古生界奥陶系鹰山组为研究目的层,研究区域主要为塔中地区的卡塔克隆起及其围斜区,兼顾巴麦地区在内的中央隆起区。通过运用地震、钻井(典型井)、测井、地球化学分析(包括扫描电镜、碳氧锶同位素、流体包裹体等)等手段,以Vail经典层序地层学理论为指导,进行鹰山组层序地层学分析;在建立三级层序格架的基础上,以层序地层研究为主线,对鹰山组岩石特征、储集体空间类型及组合、成岩作用、孔隙演化、物性等方面进行研究;最后系统研究岩溶型储集体、白云岩储集体的特征、形成机理及主控因素,对中央隆起区鹰山组碳酸盐岩储集体进行综合评价:
     利用钻井及测井资料重新厘定塔里木盆地中央隆起区奥陶系地层序列划分,结合区域地质背景分析,认为整个中央隆起区奥陶系上统存在恰尔巴克组。在此基础上,对鹰山组层序界面进行识别,识别标志包括岩性突变面、自然伽马异常面等,据此将研究区鹰山组划分为4个三级层序,层序内低位体系域不发育。层序格架内,鹰山组为弱-无镶边陆架型台地沉积,各层序台缘位置及沉积相分布有所差异,根据“沿坡定缘”的思路,利用地震资料确定了鹰山组各层序的台地边缘,并通过井震结合将沉积相与地震相对比,总结出沉积相的地震响应特征,勾绘出研究区鹰山组的沉积相平面展布。
     以碳酸盐岩结构-成因为碳酸盐岩的分类标准,分析鹰山组的岩石学特征。根据碳酸盐岩储集空间的展布特征,用“储集体”的概念代替“储层”进行鹰山组碳酸盐岩储集体研究,详细描述储集体的储集空间类型及其组合,明确鹰山组碳酸盐岩的成岩类型,并讨论层序格架内成岩-孔隙演化的规律,认为层序控制的高位体系域对储集体的孔隙演化有重要作用。
     将鹰山组储集体分为岩溶型储集体和白云岩储集体进行成因机理和主控因素的探讨。对于岩溶型储集体,同生期大气水溶蚀作用在该组不发育,表生岩溶作用和埋藏岩溶是储集体形成的主要原因,表生岩溶作用范围广、纵向分带性明显,古地理条件、岩溶期次、沉积相、高频层序对岩溶型储集体的分布具主要控制作用;白云岩储集体以晶间孔、晶间溶孔组成的孔隙型储集体为主,其成因与白云石化过程(白云石的结构演化)、次级海平面升降导致的短期暴露以及后期的构造-热液(埋藏溶蚀)调整、改造关系密切,尤其是在二叠纪火山-岩浆活动期间,侵蚀性热液流体对白云岩层进行改造,形成了新的溶蚀孔洞,这对于寻找内幕型白云岩储集体非常有利。
     最后,论文通过多口井储集体物性特征统计,结合研究区成藏特征及试、采油资料,指出研究区较为有利的勘探区。
Various types of carbonate reservoir develope in Tarim Basin, but many previous studies indicate that the reservoir properties are of the characteristics of strong heterogeneities. Aiming at solving the shortage, this paper deals with the geological characteristics of Yingshan formation in the central uplift area of Tarim Basin. According to seismic interpretation and typical wells analysis, the sequence stratigraphy of Yingshan formation has been analyzed firstly. On the basis of sequence analysis, lithology, reservoir space types, diagenesis, pore evolution and physical property, etc. are investigated secondly. Finally, the reservoir of Yingshan formation is divided into Karst reservoir and Dolomite reservoir to discussed systematically, including genetic mechanism and main controlling factors. In addition, all these study are under the theoretical guidance of P.R.Vail’s classic sequence stratigraphy and sedimentary petrology and reservoir geology.
     Based on absorbing the studied results of former geologists, drilling and logging dates show that there exists a high GR section (about10~30m) at the bottom of Lianglitage formation,which can be comparative to Qiaerbake formation. Considering the geological background, we initially puts forward that the Qiaerbake formation presents in the interesting area. On the theory basis of the P.R.Vail’s classic sequence stratigraphy, with well drilling (the sign of the exposure, the lithologic association, the gamma anomaly), well logging and seismic as recognition method, five sequence boundary and four third-order sequences could be identified in Yingshan formation. every sequence develops transgression system tract (TST) and high system tract (HST),but the low system tract (LST) is hardly found.
     Lithology feature demonstrates the depositional environment of Yingshan formation is feeble rimmed or rimless platform. The sedimentary facies include restricted platform, open platform and platform margin. Sedimentary facies planar distribution within the sequence framework are different in different third-order sequences. The location of platform margin are also various, by combining the clue of locating border along slope.
     This paper has seen departmental standard and carbonate rock structural genetic classification as fundamental framework and guidebook, put forward structural genetic clascification criteria of Yingshan carbonate rock in the interesting area. With the ananlying of lithofacies, diagenesis, reservoir space and physical property, the law found within third-order sequence is that high system tract(HST) controlled by sequence takes an essential role in the evolution of pore. The reservoir spaces contain non-selective solution dissolved pore, cavity, vuggy and fracture. They combination can be compartmentalize four types, i.e. dissolved pore type, dissolved pore-fracture type, karst cave type and fracture type. The best one for reservoir is dissolved pore-fracture type.
     The reservoir of Yingshan formation can be divided into karst reservoir and dolomite reservoir to explore their genetic mechanism and controlling factors. The syndepositional karstification does not develop in the reservoir of Yingshan formation, but mainly controlled by epigenetic karstification and burial karstification. The epigenetic karstification distribute widely with obvious longitudinal zoning and discrepancy in different areas. And karst reservoir development is related to paleogeography, karstification stages, sedimentary facies and high frequency sequences. Dolomite reservoir whose reservoir space dominated by intercrystalline pore and intercrystalline solution pore is intimately controlled by dolomitization (evolution of dolomitie structure), short-term exposure caused by subordinated fluctuation of sea level and later structurally controlled hydrothermal alteration(burial karstification). Especially, aggressive hydrothermal fluid transfers through open fault and encourage dolomization in the volcano-magma active period of Permian.The hydrothermal dolomization makes new solution pore born, which is beneficial to discover the inner buried dolomite reservoir.
     As a result, the favourable exploration area has been pointed out by statistical characteristics of reservoir properties and analysis of typical reservoirs in the end.
引文
[1]康玉柱.塔里木盆地大油气田勘探方向[J].新疆石油地质,2004,25(6):581-583.
    [2]翟光明,何文渊.塔里木盆地石油勘探实现突破的重要方向[J].石油学报,2004,25(1):1-7.
    [3]潘文庆,刘永福,Dickson,等.塔里木盆地下古生界碳酸盐岩热液岩溶的特征及地质模型[J].沉积学报,2009,27(5):983-994.
    [4]罗立民.河湖沉积体系三维高分辨率层序地层学[M].北京:地质出版社.1999.
    [5] Mitchum, Vail, and Thompson, Seismic stratigraphy and global changes of sea level, Part2: The depositional sequence as a basic unit for stratigraphic analysis[M].AAPG Memoir 26,1977.
    [6] Vail, Seismic stratigraphy interpretation using sequence stratigraphy, Part2: Seismic stratigraphy interpretation procedure[M]//Bally A.W., Seismic Stratigraphy: AAPG Studies in Geology, Tulsa: AAPG,1987:1-10.
    [7] Schlager .Drowning unconformities on carbonate platforms[M]//Crevello P.D., Controls on carbonate platform and basin development: SPEM, Special publication 44,1989:15-25.
    [8] Erlich, Longo and Guo. Seismic and geologic characteristics of drowning events on carbonate platform[J].AAPG Bulletin,1990,74:1523-1537.
    [9] Schlager. Sedimentology and sequence stratigraphy of reefs and carbonate platforms[M]. Continuing education course note series #34:AAPG,1992.
    [10] Tucker, Calvet and Hunt. Sequence stratigraphy of carbonate ramps: systems tracts, models and application to the Muschelkalk carbonate platforms of eastern Spain[M]//Posamentier H.W., Sequence stratigraphy and facies associations: International Association of Sedimentologists, Special publication 18,1993:397-415.
    [11] Loucks, Sarg. Carbonate sequence stratigraphy—Recent developments and applications[M]. AAPG Memoir 57,1993.
    [12] Sarg, Markello and Weber. The second-order cycle, carbonate-platform growth, and reservoir, source, and trap prediction[M]//Harris P.M., Advances in carbonate sequence stratigraphy: application to reservoirs, outcrops and models, Society for Sedimentary Geology, Special publication 18, 1999,63:11-34.
    [13]魏魁生,徐怀大,叶淑芬,等.碳酸盐岩层序地层学—以鄂尔多斯盆地为例[M].北京:地质出版社,2000.
    [14] Moore. Carbonate reservoirs: porosity evolution and diagenesis in a sequence stratigraphic framework[M].Elsevier,2001.
    [15] Bernaus, Vanneau and Caus. Stratigraphic distribution of Valanginian-early Aptian shallow-water benthic Foraminifera and algae, and depositional sequences of a carbonate platform in a tectonically-controlled basin[J]. Cretaceous Research,2002,23(1):25-36.
    [16] Catuneanu, Abreu and Bhattacharya, et al. Towards the standardization of sequence stratigraphy[J], Earth-Science Reviews 2009,92:1-33.
    [17] Anderson, Goodwin.The significance of meter-scale allocycles in the quest for a fundamental stratigraphic unit[J].Journal of the Geological Society, 1990,147:507-518.
    [18]梅冥相,徐德斌,周洪瑞.米级旋回层序的成因类型及其相序组构特征[J].沉积学报, 2000,18(1):43-50.
    [19]奥克塔文·卡图尼努.层序地层学原理(原书影印版)[M].石油工业出版社,2009.
    [20] Schlager. Carbonate sedimentology and sequence stratigraphy [M].SPEM,2005.
    [21] Choqutte and Steinen.Mississippian oolite and non-supratidal dolomite reservoirs in the Genevieve Formation,North Bridgeport Field,Illinois Basin[M]//Roehl P.O., Carbonate petroleum reservoir,New York, Springer-Verlag,1985:207-225.
    [22] Loucks. Paleocave carbonate reservoirs: origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999,83:1795-1834.
    [23]罗平,张静,刘伟,等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘,2008,15(1):36-50.
    [24]陈学时,易万霞,卢文忠.中国油气田古岩溶与油气储层[J].沉积学报.2004,22(2):244-253.
    [25]徐国强.塔里木盆地早海西期风化壳岩溶洞穴层研究[D].成都理工大学,2007.
    [26]王恕一,陈强路,马红强.塔里木盆地塔河油田下奥陶统碳酸盐岩的深埋溶蚀作用及其对储集体的影响[J].石油实验地质,2003,25(增刊):557-561.
    [27] Conxita, James. Celestite formation,bacterial sulphate reduction and carbonate cementation of Eocene reefs and basinal sediments (Igualada,NE Spain)[J],Sedimentology,2002,49(2): 171-190.
    [28] Kharaka, Lungedard, Ambats,et al. Generation of aliphatic acid anions and carbon dioxide by hydrous pyrolysis of crude oils[J].Applied Geochemistry,1993,8:317-324.
    [29]李忠,韩登林,寿建峰.沉积盆地成岩作用系统及其时空属性[J].岩石学报,2006, 22(8):2151-2164.
    [30] Barth and Bj?rlykke, Organic acids from source rock maturation: generation potentials, transport mechanism and relevance for mineral diagenesis[J].Applied Geochemistry 1993,8: 325-337.
    [31]黄思静,QING Hairuo,胡作维,等.四川盆地东北部三叠系飞仙关组硫酸盐还原作用对碳酸盐成岩作用的影响[J].沉积学报,2007,25(6):815-824.
    [32] Worden, Smalley. Gas souring by thermochemical sulfate reduction at 140℃[J]. AAPG Bulletin,1995,79(6):854-863.
    [33] Cai, Hu, Worden. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim[J].Marine and Petroleum Geology,2001, 18(6), 729-741.
    [34] Machel. Bacterial and thermochemical sulfate reduction in diagenetic settings:Old and new insights[J].Sedimentary Gelology,2001,140:143-175.
    [35] Ehrenberg, Porosity destruction in carbonate platforms[J]. Journal of Petroleum Geology, 2006,29(1): 41-52.
    [36]吴茂炳,王毅,郑孟林,等.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响[J].中国科学(D辑:地球科学),2007(增刊I):83-92.
    [37] Bagdasarova. The role of hydrothermal processes in oil and gas reservoirs formation[J].Geol Nefti Gaza,1997,322(9):42-46.
    [38] Davies, Smith. Structurally controlled hydrothermal dolomite reservoir facies: An Overview[J]. AAPG Bulletin,2006,90(11):1641-1690.
    [39]潘文庆,刘永福,Dickson,等.塔里木盆地下古生界碳酸盐岩热液岩溶的特征及地质模型[J].沉积学报,2009,27(5):1-7.
    [40]钱一雄,Taberner,邹森林,等.碳酸盐岩表生岩溶与埋藏溶蚀比较—以塔北和塔中地区为例[J].海相油气地质,2007,12(2):1-7.
    [41] Land, Failure to precipitate dolomite at 25 degrees C from dilute solution despite 1000-fold oversaturation after 32 years[J].Aquatic Geochemistry 1998,4(3-4):361-368.
    [42] Warthmann, Lith, Vasconcelos, et al.,Bacterially induced dolomite precipitation in anoxic culture experiments[J]. Geology, 2000, 28:1091-1094.
    [43] Vasconcelos, McKenzie, Warthmann, et al., Calibration of theδ18O paleothermometer for dolomite precipitated in microbial cultures and natural environments[J]. Geology, 2005. 33: 317-320.
    [44] Patterson and Kinsman. Formation of diagenetic dolomite in coastal sabkha along Arabian (Persian) Gulf[J]. AAPG Bulletin, 1982, 66:28-43.
    [45]于炳松,董海良,蒋宏忱,等.青海湖底沉积物中球状白云石集合体的发现及其地质意义[J].现代地质,2007,21(1):66-70.
    [46] Wacey, Wright and Boyce. A stable isotope study of microbial dolomite formation in the Coorong region, South Australia[J], Chemical Geology, 2007,244(1-2):155-174.
    [47] Pisciotto and Mahoney. Authigenic dolomite in Monterey Formation, California, and related rocks from offshore California and Baja California[J]. AAPG Bulletin, 1981,65(5):972-973.
    [48] Warren, Dolomite: occurrence, evolution and economically important associations[J]. Earth-Science Reviews, 2000, 52:1-81.
    [49] Boni, Parente, Bechstadt et al., Hydrothermal dolomites in SW Sardinia (Italy): evidence for a widespread late-Variscan fluid flow event[J], Sedimentary Geology, 2000, (131):181-200.
    [50] Swennen, Vandeginstea and Ellam. Genesis of zebra dolomites (Cathedral Formation: CanadianCordillera Fold and Thrust Belt, British Columbia)[J].Journal of Geochemical Exploration,2003,78:571-577.
    [51] Kyser, James and Bone.Shallow burial dolomitization and dedolomitization of Cenozoic cool-water limestones[J]. Journal of Sedimentary Research,2002,72:146-157.
    [52] Alex, Jones, Dolomitization of the Pedro Castle formation (Pliocene),Cayman Brac, British West Indies, Sedimentary Geology, 2003,162:219-238.
    [53] Machel. Concepts and models of dolomitization:A critical reappraisal[C]//The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs.London:Geological Society Special Publication, 2004,235:7-63.
    [54] Tabakha, Mory and Schreiber et al. Anhydrite cements after dolomitization of shallow marine Silurian carbonates of the Gascoyne Platform, Southern Carnarvon Basin, Western Australia[J]. Sedimentary Geology,2004,164:75-87.
    [55] Luczaj. Evidence against the Dorag(mixing-zone) model for dolomitization along the Wisconsin arch—A case for hydrothermal diagenesis[J].AAPG Bulletin, 2006,90(11):1719-1738.
    [56] Borkhataria, Aigner and Pipping. An unusual, muddy, epeiric carbonate reservoir: The Lower Muschelkalk (Middle Triassic) of the Netherlands[J]. AAPG Bulletin, 2006,90(1):61-89.
    [57] Davies,Smith. Structurally controlled hydrothermal dolomite reservoir facies:An Overview[J]. AAPG Bulletin,2006,90(11):1641-1690.
    [58] Wardlaw.Pore geometry of carbonate rocks as revealed by pore casts and capillary pressure[J]. AAPG Bulletin,1976,60(2):245-257.
    [59]朱井泉,吴仕强,王国学,等.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.
    [60]王毅.塔里木盆地震旦系—中泥盆统层序地层分析[J].沉积学报,1999,17(3):414-421.
    [61]于炳松,陈建强,林畅松.塔里木地台北部寒武纪—奥陶纪层序地层及其与扬子地台和华北地台的对比[J].中国科学(D辑),2001,31(1):17-26.
    [62]樊太亮.塔里木盆地寒武—奥陶系沉积体系及储层评价研究[R],中国地质大学,2003.
    [63]许效松.塔中地区寒武系—奥陶系层序地层与古岩溶研究[R],成都环境地质与资源开发研究所,2005.
    [64]顾家裕.塔里木盆地下奥陶统白云岩特征及成因[J].新疆石油地质,2000,21(2):120-122.
    [65]金之钧,朱东亚,胡文瑄,等.塔里木盆地热液活动地质地球化学特征及其对储层影响[J].地质学报,2006,80(2):245-254.
    [66]陈强路,何治亮,李思田.塔中地区奥陶系碳酸盐岩储层与油气聚集带[J].石油实验地质,2007(4):367-372.
    [67]李凌,谭秀成,陈景山,等.塔中北部中下奥陶统鹰山组白云岩特征及成因[J].西南石油大学学报,2007,29(1):34-36,
    [68]郑和荣,刘春燕,吴茂炳,等.塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用[J].石油学报,2009,30(1):9-15.
    [69]马红强,王恕一,雍洪,等.塔里木盆地塔中地区奥陶系碳酸盐岩埋藏溶蚀特征[J].石油实验地质,2010,32(5):434-441.
    [70]贾承造.中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [71]何登发,李德生.塔里木盆地构造演化与油气聚集[M].北京:地质出版社,1996.
    [72]丁道桂,王道轩,刘伟新,等.西昆仑造山带与盆地[M.北京:地质出版社,1996.
    [73]潘桂棠,李兴振,王立全,等.青藏高原及邻区大地构造单元初步划分[J].地质通报,2002,21(11):701-707.
    [74]傅恒.塔中—巴麦地区寒武系沉积与构造特征研究[R].成都中生代石油科技有限公司,2010.
    [75]焦志峰,高志前.塔里木盆地主要古隆起的形成、演化及控油气地质条件分析[J] .天然气地球科学,2008,19(5):639-646.
    [76]丁文龙,林畅松,漆立新,等.塔里木盆地巴楚隆起构造格架及形成演化[J].地学前缘,2008,15(2):242-252.
    [77]李曰俊,吴根耀,孟庆龙,等.塔里木盆地中央地区的断裂系统几何学、运动学和动力学背景[J].地质科学,2008,43(1):82-118.
    [78]邬光辉,李启明,张宝收,等.塔中Ⅰ号断裂坡折带构造特征及勘探领域[J].石油学报,2005,26(1):27-30+37.
    [79]董宝清,杜品德,刘兴礼,等.塔中88井奥陶系吐木休克组的发现及地层划分[J].新疆石油地质,2008,29(5):599-602.
    [80]王鸿祯,史晓颍,王训练,等.中国层序地层研究[M].广州:广东科技出版社,2000.
    [81]王贵文,郭荣坤.测井地质学[M].北京:石油工业出版社,2000,112-128.
    [82]布朗,费歇尔.地震地层学解释及石油勘探[M].北京:石油工业出版社,1988.
    [83]朱筱敏.层序地层学[M].北京:石油大学出版社,2000.
    [84]吴兴宁,赵宗举.塔中地区奥陶系米级旋回层序分析[J].沉积学报,2005,23(2):310-315.
    [85] Flügel, Mikrofazielle Untersuchungsmethoden von Kalken[M]. Springer, Berlin, 1978.
    [86]贾振远,李之琪.碳酸盐岩沉积相和沉积环境[M].武汉:中国地质大学出版社,1989.
    [87] Read, Carbonate platform facies models. AAPG Bulletin[J],1985,69(1):1-21.
    [88] Tucker, Wright, Dickson. Carbonate Sedimentology [M]. Blackwell Scientific Publications, Oxford ,1990.
    [89] Scoffin and Tudhope. Sedimenlary environments of the cenral region of the Greal Barrier Reef of Australia [J]. Coral Reefs, 1985,4:81-93.
    [90]顾家裕,马锋,季丽丹.碳酸盐岩台地类型、特征及主控因素[J].古地理学报,2009,11(1):21-27.
    [91]曾允孚,夏文杰.沉积岩石学[M].北京:地质出版社,1986.
    [92] Ahr.W.M,Geology of Carbonate Reservoir[M].Wiley, New jersey,2008.
    [93]王嗣敏,金之钧,解启来.塔里木盆地塔中井区碳酸盐岩储层的深部流体改造作用沉积岩石学[J].地质论评,2004,50(5):543-547.
    [94]朱井泉,吴仕强,王国学,等.塔里木盆地寒武—奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.
    [95]陈景山,李忠,王振宇,等.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J].沉积学报,2007,25(6):858-868.
    [96]贾振远,蔡忠贤,肖玉茹.古风化壳是碳酸盐岩一个重要的储集层(体)[J].地球科学,1995,20(3):283-289.
    [97] Estebar,Klappa. Subaerial exposure surfaces[J].AAPG Memoir,1983,33:1-54.
    [98]穆曙光,张以明.成岩作用及阶段对碎屑岩储层孔隙演化的控制[J].西南石油学院学报,1994,16(3):22-27.
    [99] Hardie. Dolomitization: a critical view of some current veiw[J].Journal of Sedimentary Petrology,1987,57(1):166-183.
    [100]王丹,陈代钊,杨长春,等.埋藏环境白云石结构类型[J].沉积学报,2010,28(1):17-25.
    [101] Machel, Lonnee. Hydrothermal dolomitea-a product of poor definition and imagination[J]. Sedimentary Geology,2002,152:163-171.
    [102] Machel. Effects of groundwater flow on mineral diagenesis, with emphasis on carbonate aquifers[J].Hydrogeology Journal,1999,7:94-107.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700