用户名: 密码: 验证码:
塔中卡1区块奥陶系岩溶储集体特征研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
塔里木盆地是我国最重要的含油气盆地之一,卡1区块位于塔里木盆地中央隆起带塔中10号构造带西段。目前,奥陶系碳酸盐岩成为卡1区块的勘探重点,并已在中1井鹰山组取得突破,然而卡1区块奥陶系碳酸盐岩储集体非均质性强、影响因素多,导致勘探难度大。岩溶作用是卡1区块碳酸盐岩岩溶储集体的主要影响和控制因素。为此,本文根据研究区构造特征,以沉积岩石学、储层地质学及储层地球化学等理论为指导,综合利用钻井、测井、地球化学资料,对岩石成岩作用进行研究,并识别岩溶作用发育的类型、期次及其控制因素等,结合储集体储集空间类型和物性特征,从而确定研究区奥陶系岩溶储集体的特征。
     通过钻井岩芯观察和薄片鉴定认为,卡1区块奥陶系储集岩主要为石灰岩、白云岩以及二者之间的过渡岩石。并对研究区奥陶系储集体岩石学特征及成岩作用特征进行了总结,并建立了对应的成岩序列。
     研究区岩溶作用以表生岩溶为主,埋藏热液岩溶次之,准同生岩溶很少发育,不同类型的岩溶作用可形成不同特征的溶孔、溶洞和溶缝。本次研究识别出了不同类型岩溶发育的标志,包括钻井岩芯上特征,显微镜下特征,常规测井、成像测井上的响应特征及地球化学特征等。对研究区奥陶系储集体影响较大的表生岩溶共有四期,分别是:加里东中期Ⅰ幕岩溶(O_3/O_(1-2)),加里东中期Ⅱ幕岩溶(O_3s/O_3l),加里东中期Ⅲ幕岩溶(S/O)以及海西早期岩溶(C_1/O_1)。研究区埋藏岩溶作用主要为热液溶蚀作用,热液的形成可能与加里东晚期或海西期强烈的地下岩浆活动有关,多受控于断裂系统,在靠近大断裂带附近较发育,远离大断裂带则发育较差,热液溶蚀形成的储集空间大多为小型溶孔和裂缝。
     通过对卡1区块奥陶系碳酸盐岩储集空间及物性特征的分析,认为良里塔格组灰岩储集体的储集空间主要为非选择性溶孔、裂缝和溶洞,中-下奥陶统鹰山组的储集空间主要为晶间孔、晶间溶孔、裂缝、溶孔和溶洞。奥陶系储集体物性属于低孔低渗型,且孔隙度与渗透率的相关程度不高,鹰山组的孔渗条件总体比良里塔格组的好,可能是因为鹰山组白云岩储集体渗透性较好。碳酸盐岩储集体的发育受多种因素的控制,对于卡1地区奥陶系而言,岩溶作用、白云石化作用及构造断裂是控制储集体发育的主要因素。
     综合研究认为,上奥陶统良里塔格组有利储集体主要分布在中1井-中17井-中18井一带。良里塔格组表生岩溶发育并不完善,可能与台地内部能量低,多为灰泥沉积,不利于岩溶作用的纵向发展有关。受岩溶作用控制,良里塔格组储集体不太发育,并且,储集体主要发育于该段地层的中、上部,单层厚度最大超过10米。
     中-下奥陶统鹰山组储集体较发育,单井储集体累计厚5.4~69.4米,多数累计厚20~30米。有利储集体主要分布于塔中18井-塔中46井一带以及中1-中11井-中17井-中18井-中19井一带。鹰山组储集体规模与岩溶作用密切相关,上部地层普遍发育储集体,部分井中部和下部也发育储集体。
Tarim basin is one of the most significant oil-bearing basin in China.Ka 1 block is located in the west part of the No.10 tectonic belt in Tazhong region.At present,the Ordovician carbonate become the key point of the exploration in Ka 1 block,and it has already maken a breakthrough in Yingshan formation of Zhong 1 well.However, the previous studies show that the reservoirs in Ka 1 block are of the characteristics of strong heterogeneities,multiple influencing factors and petroleum exploration is characterized by large difficulty. The main influence and control factors of karstic carbonate reservoirs is karstification.According to the structure characteristics of the study area, this paper deals with the diagenesis and also focus on the types ,the times and the control factors of the karstification.And all these studies are based on the theoretical guidance of sedimentary petrology,reservoir geology,reservoir gechemisty,et.Combining with the space types and physical property characteristics of the reservoir,the character of the Ordocician kast reservoir is determined.
     Through the studies of the cores and the thin section,limestones,dolomites and the transition rocks between them are supposed to be the main reservoir rocks of Ordovician in Ka 1 block. This paper has generalized petrology characteristic and diagenesis of Ordovician carbonate rock in research area.What’s more,the corresponding diagenesis sequence is also established.
     Karstification is the crucial factor during the formation of Ordovician carbonate reservoir. The syndepositional karstification doesn’t develop in Ordovician reservoir ,it is mainly controlled by epigenetic karstification and burial karstification. Different types of karstification can form different characteristics of solution pores, cave,and dissolve seam.This paper identified the signs of different types of karstification,including the signs of cores,thin section,well-logging, and FMI imaging logging.There are four times of epigenetic karstification which have great influence on the Ordovician reservoir.They are the first act of the karst in middle Caledonian,the second act of the karst in middle Caledonian,the third act of the karst in middle Caledonian,and the karst in early Hercynian. The burial karstification here maily means to the hydrothermal karst,and the formation of the hydrothermal karst may be related with the magma movement at late Caledonian or Hercynian period.The hydrothermal karst is controlled by the fault system,the closer ,the more possible to development.The reservoir space formed by hydrothermal karst are mostly small dissolved pore and cracks.
     With the analysis of diagenesis,reservoir space and physical property of Ordovician reservoir in interesting area,it is considered that the reservoir space of Lianglitage are nonselective solution pores,cracks and caves,while the reservoir space of Yingshan are intercrystal pores,intercrystal solution pores,cracks ,solution pores and caves.The porosity and permeability of the Lianglitage and Yingshan Formations are really low,and there is not a relation between the porosity and permeability.The porosity and permeability of Yingshan is better than that of Lianglitage,it is because the permeability of dolomite reservoir is better.There are several factors controlling the carbonate reservoir of Ka 1 block,such as karstification,dolomitization and structural fracture.
     Comprehensive study shows that the favourable reservoir mainly lacated in the region of Zhong1 well-Zhong17 well-Zhong18 well.The epigenetic karstification of Lianglitage Formation doesn’t develop very well,this may be related with the low energy of the platform.Controlled by the karstification ,the Lianglitage reservoir doesn’t develop very well.The favourable reservoir often develops in the upper and middle of Lianglitage formation,and the maximum thickness is more than 10 meters.
     The Yingshan reservoir develops quite well,and the thickness of the reservoir changes from 5.4metres to 69.4 meters,most of them are distributed in 20~30 metres. The favourable reservoir mainly lacated in the regions of Tazhong18 well-Tazhong46 well and Zhong 1 well-Zhong 11 well-Zhong17 well-Zhong18 well-Zhong19 well. Controlled by the karstification,the reservoir usually develops in the upper Yingshan formation,but reservoir also develops in the middle and under part of Yingshan formation in some wells.
引文
[1]黄擎宇.塔中地区奥陶系碳酸盐岩储层成因机理及主控因素研究[D].成都:成都理工大学,2010.
    [2]范嘉松.世界碳酸盐岩油气田的储层特征及其成藏的主要控制因素[J].地学前缘,2005,12(3):23-30.
    [3]康玉柱.塔里木盆地大油气田勘探方向[J].新疆石油地质,2004,25(6):581-583.
    [4]翟光明,何文渊.塔里木盆地石油勘探实现突破的重要方向[J].石油学报,2004,25(1):1-7.
    [5]王晨.塔里木盆地塔中地区卡1区块奥陶系沉积特征及储层评价研究[D].北京:中国地质大学,2005.
    [6]兰光志,江同文.古岩溶与油气储层[M].石油工业出版社,北京,1995
    [7]兰光志,江同文,张迁山,等.碳酸盐岩古岩溶储层模式及其特征[J].天然气工业,1996,16(6):13-17
    [8]任美愕,刘振中,等.岩溶学概论[M].北京:商务印书馆,1983.
    [9]王大纯,张人权,等.水文地质学基础[M].北京:地质出版社,1986:105一115.
    [10]徐国强,塔里木盆地早海西期风化壳岩溶洞穴层研究[D],成都理工大学,2007.
    [11]钱一雄,Conxita Taberner,邹森林,王蓉英.碳酸盐岩表生岩溶与埋藏溶蚀比较——以塔北和塔中地区为例[J].海相油气地质,2007,(02):1-7.
    [12]叶德胜.国内外碳酸盐岩成岩作用研究现状[J].矿物岩石,1985,(04).
    [13]黎玉战,徐传会.塔里木盆地塔河油田发现历程及其意义[J].石油实验地质,2004,26(2):180-186.
    [14]刘忠宝,于炳松,李廷艳,樊太亮,蒋宏忱.塔里木盆地塔中地区中上奥陶统碳酸盐岩层序发育对同生期岩溶作用的控制[J].沉积学报,2004,22(1):103-109.
    [15]刘忠宝,孙华,于炳松.裂缝对塔中奥陶系碳酸盐岩储集层岩溶发育的控制[J].新疆石油地质,2007,28(3):289-291.
    [16]高志前,樊太亮,刘忠宝,等.塔里木盆地塔中地区奥陶系关键不整合性质论证及其对储层的影响[J].石油天然气学报,2005,27:567-569.
    [17]许效松,杜佰伟.碳酸盐岩地区古风化壳岩溶储层[J].沉积与地质.2005,25(3):1-7.
    [18]刘小平,孙冬胜,吴欣松,等.古岩溶地貌及其对岩溶储层的控制—以塔里木盆地轮古西地区奥陶系为例[J].石油实验地质,2006,29(3):265-268.
    [19]王宏语,樊太亮,高志前,等.塔中地区奥陶纪古地貌及其对储集层的控制作用[J].新疆石油地质,2007,28(1):15-19.
    [20] Loucks R G.Paleocave carbonate reservoirs; origins, burial-depth modifications, spatial complexity, and reservoir implications[J]. AAPG Bulletin, 1999,83(11):1795-1834.
    [21]罗平,张静,刘伟,等.中国海相碳酸盐岩油气储层基本特征[J].地学前缘,2008(01): 36-50.
    [22]陈学时,易万霞,,卢文忠.中国油气田古岩溶与油气储层[J].沉积学报,2004,22(2): 244-253.
    [23]朱东亚,金之钧,胡文瑄,等.塔里木盆地深部流体对碳酸盐岩储层影响[J].地质论评,2008,54(3):348-356.
    [24]叶德胜.塔里木盆地北部寒武-奥陶系碳酸盐岩的深部溶蚀作用[J].沉积学报,1994,12(1):66-71.
    [25]夏日元,唐建生,邹胜章,等.碳酸盐岩油气田古岩溶研究及其在油气勘探开发中的应用[J].地球学报,2006,27(5):503-509.
    [26] Conxita T D,James P Celestite formation,bacterial sulphate reduction and carbonate cementation of Eocene reefs and basinal sediments (Igualada,NE Spain)[J],Sedimentology,2002,49(2):171-190.
    [27] CaiC F,HuW S,Worden R H. Thermochemical sulphate reduction in Cambro-Ordovician carbonates in Central Tarim[J].Marine and Petroleum Geology,2001,18(6),729-741.
    [28]王恕一,陈强路,马红强.塔里木盆地塔河油田下奥陶统碳酸盐岩的深埋溶蚀作用及其对储集体的影响[J].石油实验地质,2003,25:557-561.
    [29] Krouse H R ,Vian C A , Eliuk L S,et al.Chemical and isotopic evidence of thermochemical sulphate reduction by light hydrocarbon gases in deep carbonate reservoirs[J]. Nature,1988,333(2):415-419.
    [30] Worden R H ,Smalley P C.Gas Souring by Thermochemical Sulfate Reduction at 140℃[J]. AAPG Bulletin,1995,79(6):854-863.
    [31]朱光有,张水昌,梁英波,等.川东北飞仙关组H2S的分布与古环境的关系研究[J ] .石油勘探与开发,2005,32(4):65-69.
    [32]丁康乐,李术元,岳长涛,等.硫酸盐热化学还原反应基本步骤与反应机理初探[J ] .燃料化学学报,2008,36(6):706-711.
    [33]杜春国,郝芳,邹华耀,等.热化学硫酸盐还原作用对碳酸盐岩气藏的化学改造——以川东北地区长兴组-飞仙关组气藏为例[J].地质科技情报,2007,81(1):120-127.
    [34]朱光有,张水昌,梁英波,等.四川盆地高含H2S天然气的分布与TSR成因证据[J].地质学报,2006,80(8):1208-1218.
    [35] Bagdasarova M V. The role of hydrothermal processes in oil and gas reservoirs formation[J].Geol Nefti Gaza,1997,322(9):42-46
    [36]金之钧,王清晨.中国典型叠合盆地与油气成藏研究新进展——以塔里木盆地为例.中国科学D辑:地球科学[J],2004,34(增刊Ⅰ):1-12.
    [37] White D E. Thermal waters of volcanic origin[J]. Geological Society of America Bulletin,1957,68:1637-1658.
    [38]焦伟伟,李建交,田磊.中国海相碳酸盐岩优质储层形成的地质条件[J].地质科技情报, 2009,(06):64-70.
    [39]吴茂炳,王毅,郑孟林,等.塔中地区奥陶纪碳酸盐岩热液岩溶及其对储层的影响[J].中国科学(D辑:地球科学),2007(增刊I):83-92.
    [40] Wierzbicki R., J. J.Dravis, I. Al-Aasm, and N. Harland, Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada[J].AAPG Bulletin, 2006,90:1843–1861.
    [41]黄尚瑜.碳酸盐岩的溶蚀与环境温度[J].中国岩溶,1987,6(4):287-296.
    [42]宋焕荣,黄尚瑜.碳酸盐岩与岩溶[J].矿物岩石,1988,8(1):9-17.
    [43]宋焕荣,黄尚瑜.碳酸盐岩化学溶蚀效应[J].现代地质,1993,7(3):363-371.
    [44]郑荣才,陈洪德,等.川东黄龙组古岩溶储层的稳定同位系和流体性质[J].地球科学(中国地质大学,报),1997,22(4):424-428.
    [45]郑荣才,陈洪德,等.川东黄龙组古岩溶储层微量和稀土元素地球化学特征[J].成都理工学院学报.1997,24(1):1-7.
    [46]李定龙.皖北奥陶系古岩溶及其环境地球化学特征研究[M].北京:石油工业出版社,2001.
    [47]刘忠宝.塔里木盆地塔中地区奥陶系碳酸盐岩储层形成机理与分布预测[D].北京:中国地质大学,2006年.
    [48]钱一雄,邹远荣,等.塔里木盆地塔中西北部多期、多成因岩溶作用地质—地球化学表征[J]沉积学报.2005,4(12):596-603.
    [49]舒志国,朱振道,等.塔中隆起奥陶系古岩溶储层发育特征[J].新疆地质.2008,3(9):274-278.
    [50]胡明毅,蔡习尧,等.塔中地区奥陶系碳酸盐岩深部埋藏溶蚀作用研究[J].石油天然气学报.2009,6(12):49-55.
    [51]张天付,鲍征宇,马明,等.鲕粒灰岩的溶解动力学特征和微观形貌的发育演化[J].沉积学报. 2009(06):1033-1042.
    [52]翟永红,王泽中,等.塔中地区奥陶系白云岩特征及成因[J].1992,4(12):1-6
    [53]沈昭国,陈永武,等.塔里木盆地下古生界白云石化成因机理及模式探讨.1995,4(12):319-324.
    [54]李凌,谭秀成等.塔中北部中下奥陶统鹰山组白云岩特征及成因[J].2007,1(02):34-37.
    [55]钱一雄,尤东华.塔中地区西北部奥陶系白云岩(化)成因分析[J].2006,2(04):146-150.
    [56]顾家裕.塔里木盆地下奥陶统白云岩特征及成因[J].新疆石油地质, 2000,21(2):120-122
    [57]朱东亚,金之钧,胡文瑄.塔中地区热液改造型白云岩储层[J].石油学报. 2009(05): 698-704.
    [58]贾承造,中国塔里木盆地构造特征与油气[M].北京:石油工业出版社,1997.
    [59]王继超,塔中地区卡1区块志留—石炭纪碎屑岩沉积微相研究及有利区预测[D],西北大学,2009.
    [60]计雄飞.塔里木盆地主干断裂特征及其演化过程研究[D].成都:成都理工大学,2008.
    [61]丁文龙,林畅松,漆立新.塔里木盆地巴楚隆起构造格架及形成演化[J].地学前缘,2008,15(2):242-252.
    [62]李日俊,吴根耀,孟庆龙,等.塔里木盆地中央地区的断裂系统几何学运动学和动力学背景[J].地质科学,2008,43(1):82-118.
    [63]周小军.塔里木盆地卡塔克古隆起不整合和构造特征及其演化[D].北京:中国地质大学,2006.
    [64]陈清清.卡塔克隆起带早古生代构造样式和构造演化研究[D].北京:中国地质大学,2007.
    [65]张克银.卡塔克古隆起多旋回构造演化与油气多期动态成藏[D].成都:成都理工大学,2006.
    [66]汤良杰.略论塔里木盆地主要构造运动[J].石油实验地质,1997,19(2):108-114.
    [67]王子煌,陆克政,漆家福.塔里木盆地塔中凸起的构造演化及其与油气藏的关系[J].石油大学学报(自然科学版),1998,22(4):14-17.
    [68]马锋.塔中Ⅱ号构造带演化及其对油气藏的控制作用[D].东营:中国石油大学,2007.
    [69]刘聪,塔里木盆地塔中地区奥陶系层序地层及其对储层发育的控制[D].北京:中国地质大学,2006.
    [70]李传新,贾承造,李本亮,等.塔里木盆地塔中低凸起北斜坡古生代断裂展布与构造演化[J].地质学报,2009(08):1073-1065.
    [71] Davies G R,Smith J L B.Structurally controlled hydrothermal dolomite reservoir facies :An Overview[J].AAPG Bulletin,2006,90(11):1641-1690.
    [72]陈学时,易万霞,卢文忠.中国油气田古岩溶与油气储层[J].沉积学报. 2004, 22(2): 244-253.
    [73]朱井泉,吴仕强,王国学,等.塔里木盆地寒武-奥陶系主要白云岩类型及孔隙发育特征[J].地学前缘,2008,15(2):67-79.
    [74]黄思静,王春梅,黄培培,等.碳酸盐成岩作用的研究前沿和值得思考的问题[J].成都理工大学学报(自然科学版),2008,35(1):1-10.
    [75] N.P James and P W Choquette.Paleokarst[M].Springer-Verlag,1985.
    [76]陈新军,蔡希源,等.塔中奥陶系大型不整合面与风化壳岩溶发育[J].同济大学学报:自然科学版,2007. 35(8):1122-1127.
    [77]何碧竹,焦存礼,贾斌峰,等.塔里木盆地塔中西部地区奥陶系岩溶作用及对油气储层的制约[J].地球学报, 2009(3):395-403.
    [78]陈景山,李忠,王振宇,等.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J].沉积学报.2007,25(6):858-868.
    [79]赵永刚,奥陶系碳酸盐岩古岩溶及其储层研究[D].成都:西南石油大学,2006.
    [80] Ehrenberg S N,Porosity destruction in carbonate platforms[J]. Journal of Petroleum Geology,2006,29(1): 41-52.
    [81]李丕龙,冯建辉,樊太亮等.塔里木盆地构造沉积与成藏[M].北京:地质出版社,2010.3
    [82] Land L S . The origin of massive dolomite[J].Journal of Geological Education,1985,33:112-125 .
    [83] Folk R L,Land L S.Mg/Ca Ratio and Salinity:Two Controls on Crystallization of Dolomite[J].AAPG Bulletin,1975,59:6O-68.
    [84] Warren J . Dolomite : Occurrence , Evolution and Economically Importent Associations[J].Earth-Science Review,2000,52:1-81.
    [85]姜在兴,沉积学[M].北京:石油工业出版社,2003.
    [86] Machel H G. Concepts and models of dolomitization : A critical reappraisal[C] .The Geometry and Petrogenesis of Dolomite Hydrocarbon Reservoirs. London: Geological Society Special Publication,2004,235:7-63.
    [87] Luczaj J A. Evidence against the Dorag(mixing-zone)model for dolomitization along the Wisconsin arch—A case for hydrothermal diagenesis[J].AAPG Bulletin, 2006,90(11):1719-1738.
    [88] Lavoie D and Morin C. Hydrothermal dolomitization in the Lower Silurian Sayabec Formation in north Gaspe-Matapedia(Quebec): Constraint on timing of porosity and regional significance for hydrocarbon reservoirs [J]. Bulletin of Canadian Prtroleum Geology, 2004, 52(3): 256-269.
    [89] Smith L B. Origin and reservoir characteristics of upper Ordovician Trenton -black river hydrothermal dolomite reservoirs in New York[J].AAPG Bulletin, 2006, 90(11):1691-1718.
    [90] Flügel,E.Microfacies of Carbonate Rocks.[M].Berlin,Springer,2004.
    [91] Ahr.W.M,Geology of Carbonate Reservoir[M].Wiley,New jersey,2008.
    [92] Adam J E, Rhodes M L. Dolomitization by seepage reflux[J].AAPG Bulletin, 1960, 44(12):1912- 1920.
    [93]陈景山,李忠,王振宇,等.塔里木盆地奥陶系碳酸盐岩古岩溶作用与储层分布[J].沉积学报.2007,25(6):858-868.
    [94] N.P James and P W Choquette. Paleokarst[M].Springer-Verlag,1985.
    [95]王宝清.古岩溶与储层研究[M].北京:石油工业出版社,1995.
    [96]樊太亮,于炳松,邓宏文.塔里木盆地寒武-奥陶系沉积体系及储层评价研究.中国石化西部新区勘探指挥部项日报告,2004.
    [97] Hardie,L.A.Dolomitization:a critical view of some current views[J]. Journal of Sedimentary Petrology,1987,57(1):166-183.
    [98]王丹,陈代钊,杨长春,等.埋藏环境白云石结构类型[J].沉积学报,2010,28(1):17-25 Sedimentology,2007,55(2):423-460.
    [99] Davies G R ,Smith J L B. Structurally controlled hydrothermal dolomite reservoir facies :An Overview[J]. AAPG Bulletin,2006,90(11):1641-1690.
    [100] Wierzbicki R., J. J. Dravis, I. Al-Aasm, and N. Harland, Burial dolomitization and dissolution of Upper Jurassic Abenaki platform carbonates, Deep Panuke reservoir, Nova Scotia, Canada[J].AAPG Bulletin, 2006,90:1843–1861.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700