用户名: 密码: 验证码:
基于断层破裂过程分解法模拟近断层宽频地震动
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在工程地震学中,特别着重研究较大地震或大地震产生的宽频地震波,因为这些波是地震引起建筑物与结构物破坏的主要原因,合理有效的近场强地震动预测有利于减轻未来大地震所造成的灾害以及帮助重大工程的抗震设计和地震危险性分析。论文介绍比较了现有的近断层强地震动估计的研究方法,主要有确定性方法(包括理论和经验格林函数方法),随机方法和混合法。介绍了三种方法的理论基础,分析比较了各种方法的特点和优势。目前,理论格林函数方法主要用于计算低频(<1Hz)地震波,受计算条件限制,很少应用于计算高频地震波;高频(>1Hz)地震动常用经验格林函数法或随机方法。经验格林函数法要求有相同震源机制的、高信噪比的小震记录;随机方法没有考虑实际地壳速度结构对传播中波的影响,对低频段地震动模拟不够准确。
     本文通过计算理论格林函数,尝试采用分解给定的震源时间函数的方法来模拟宽频带(0.1~10Hz)强地面运动,即:采用分级离散断层面和分解断层面破裂单元上升时间的方法,来模拟断层破裂的细节过程,增加震源时间函数中的高频信号,进而得到宽频带地震图。这种方法避免了对地震记录丰富程度和准确性的依赖,同时可以保证结果体现明确的体波和面波到时,有利于在缺少或者没有强地震动记录数据的地区中使用。
     本文以2000年9月3日的美国Yountville地震(Mw5.0)为算例,进行了近场强地震动模拟计算。首先根据断层破裂面积、断层尺度及平均滑动与地震矩的关系经验半经验关系式,确定模拟的断层模型。模拟计算了近断层50km内的10个台站的地震图,比较了模拟结果和观测记录的加速度时程和傅里叶振幅谱,分析了加速度时程的特点,通过傅里叶振幅谱的对比结果,看到改变输入震源时间函数的新确定性方法可以模拟到0.1~10Hz宽频段地震动。
     作为对大地震近断层强地震动模拟的应用,模拟计算了汶川地震在8个地震观测台的地震动,将模拟结果和观测记录进行了加速度时程曲线和傅里叶振幅谱的对比分析。对比结果显示,模拟估计的地震动加速度峰值和持续时间与观测记录的数据基本在±50%的精度范围内相同,傅里叶振幅谱显示模拟结果有得到10Hz左右的高频成分,四川盆地中的台站模拟结果高频衰减比观测记录要快,原因是模拟过程没有考虑场地效应,在地形复杂地区的强地震动模拟还是要综合考虑震源、传播路径和场地的影响。研究结果表明此改变震源输入的确定性方法可应用于模拟近断层宽频强地面运动。同时为反应近断层附近的地震动特点,计算了断层距为20km的两条测线,模拟结果显示出地震动的方向性效应和上下盘效应;进一步计算了近断层200km范围内的PGA分布图,比较地震烈度分布图,模拟结果合理显示了汶川地震动的分布特征。
In the intercrosss area of engineering and earth science, study on broadband ground motions generated by strong or great earthquake is a key research field because these waves is the main reason to cause the damage and collapse of buildings and other engineering structures. A good and efficient estimation method of the ground motion is usful to reduce the damage of future strong earthquake and help to do the resisting earthquake design and probabilistic seismic hazard analysis for the major projects. Earthquake researchers and earthquake workers have proposed several methods for the near fault ground motion synthesis. This article introduces the mainly three methods such as the deterministric method(including theoretical and empirical green function), the stochastic method and the hybrid broadband frequency strong ground motion simulation technique. The theoretical fundament of the methods have been explained and compared their characteristic and advantage. For now, the theoretical green function is mainly used to simulate the low frequencies (0.1-1Hz) due to the computation conditions. The high frequencies(1.0-10Hz) can be simulated by empirical green function method or stochastic method. The empirical green function method needs some some earthquake records which have high signal-to-noise ratio the same source mechanism as the simulated target earthquake. The stochastic, bandlimited, white-noise synthetics have not considered the propagation in the earth materials and the accuracy of long period earthquake waves.
     In this paper, a discreting model of source function based on kinematics is adopted for predicting near field strong ground motion in broadband frequencies (0.1-10Hz) using theoretical elastic-wave-propagation sythetics in multi-layered half-space media. The high frequency components can be calculated by keeping the high frequency signal of the source functions when we discrete the fault plane in second order and disintegrate the rise time of each fault element. Theoretical elastic-wave-propagation sythetics introduce proper seismic-phase arrivals of body waves and surface waves and reduce the dependence with the earthquake records'richness and accuracy.
     In order to illustrate the reliability and praeticability of the changed source function theoretical green function method developed by this paper,2000 Mw5.0 Yountville, California, Earthquak is taken as an example. Firstly, according to the relation between the rupture area, the longth and width of the fault, average slip and the earthquake moment magnitude, we determine the fault model. Then we calculate 10 stations ground motion near the fault (the distance from station to epicenter<50km). Acceleration time histries and the frequency spectra were compared with those records observed at the same stations during the shock. The results show that the acceleration frequency spectra from the discreted source model of the paper with theoretical green function synthesis can be predict well. And also some difference in shape of acceleration time history envelops.
     As another test of the application for the great earthquake near fault strong ground motion simulation, we simulate ground motions of Wenchuan earthquake in 8 selected stations located near the fault. The results show overall agreement on the acceleration histries, duration within±50% tolerance between the simulated and observed acceleration. The simulated Fourier spectrum has the components as high as 10Hz. The simulated Fourier spectrums at the stations in the Sichuan basin attenuate faster than the observed because the method has not considered site effect. The strong ground motion simulation should consider all the source, propagation path and site effect in the complicated topography. The results indicate that the deterministic method changing input source functions can be applied to simulate the near-fault strong ground motion in the broadband frequencies.Then Calculate the velocity histries on two survey line 20km from the fault line to learn more about the characteristic of the near fault ground motion. These results show the effects of hanging wall and the forward directivity. Futhermore, the PGA distribution on the areas within 200km away from the fault displays the generally influence regions.
引文
凡友华,陈晓非,刘雪峰,等.2007.Rayleigh波的频散方程高频近似分解和多模式激发数目.地球物理学报,50(1):233-239
    盖增喜,陈晓非.2007.利用点源叠加合成有限尺度运动源的理论地震图.北京大学学报,2(4),1-6
    郭宝琦,崔兴福.1993.几类各向异性介质中震源的数值模拟.哈尔滨工业大学学报,25(3):1-5
    郭子雄,王妙芳.2006.人造地震动合成的研究现状及展望.华侨大学学报:自然科学版,27(1):7-11
    纪晨,姚振兴.1995.区域地震范围的宽频带理论地震图算法研究.地球物理学报,38(4):460-468
    江洋,石永久,王元清,等.2009.大跨门式钢管桁架结构多点输入地震响应分析.北京交通大学学报:自然科学版,4:88-93
    金星,刘启方.2002.断层附近强地震动半经验合成方法的研究.地震工程与工程振动,22(4):22-27
    李启成,景立平,李中宁.2009.用经验格林函数法和随机方法模拟卢龙地震的比较.地震工程与工程振动,29(2):13-18
    李小军,周正华,于海英,等.2008.汶川8.0级地震强震动观测及记录初步分析.汶川地震建筑震害调查与灾后重建分析报告
    刘启明,陈晓非.2008.计算断层自发破裂过程的离散网格划分研究.地震学报,30(5):449-455
    罗奇峰,胡聿贤.1988.合成近场地震图的经验格林函数法评介.世界地震工程,(04):1-6
    罗奇峰,胡聿贤.1990.改进的经验格林函数法和卢龙近场加速度合成.地震工程与工程振动,10(3):1-13
    罗奇峰,胡聿贤.1994.估计近场地震动的统计—经验格林函数法.自然灾害学报,3(3):3-10
    石玉成,陈厚群,李敏,等.2005.随机有限断层法合成地震动的研究与应用.地震工程与工程振动,25(4):18-23
    陶夏新,王国新.2003.近场强地震动模拟中对破裂的方向性效应和上盘效应的表达.地震学报,25(2):191-198
    田玉基,杨庆山,卢明奇.2007.近断层脉冲型地震动的模拟方法.地震学报,29(1):77-84
    王彬,李文艺.2000.合成地震动方法用于研究强地震动长周期特性的探讨.地震研究,23(1):44-50
    工椿铺,Mooney, W.D.,等.2002.川滇地区地壳上地幔三维速度结构研究.地震学报,24(1):1-16
    上国新,李宏男,赵真,等.2008.结构动力反应分析中的地震动输入问题研究.沈阳建筑大学学报:自然科学版,24(6):993-998
    王国新,史家平.2008.经验格林函数法与随机有限断层法在合成近场强地震动中的联合运用.震灾防御技术,3(3):292-301
    王国新,史家平. 2008.近场强地震动合成方法研究及地震动模拟.东北地震研究,(02):4-10
    王海云,谢礼立.2008.近断层地震动模拟现状.地球科学进展,23(10):1043-1049
    温联星,姚振兴.1994.用广义射线和有限差分计算近场理论地震图的混合方法.地球物理学报,37(2):211-219
    吴建平,黄媛,张天中,等.2009.汶川Ms8.0级地震余震分布及周边区域P波三维速度结构研究.地球物理学报,52(2):320-328
    谢俊举.2011.汶川MS8.0地震近断层强地面运动特征.国际地震动态,(03):42-44
    谢礼立,陶夏新,等.2001.强地震动估计和地震危险性评定.东北地震研究,17(1):1-8
    徐扬,罗词建,李小军,等.2009.汶川8.0级地震陕西省数字强震动记录分析.震灾防御技术,4(4):363-372
    徐扬,赵晋泉,李小军,等.2008.基于汶川地震远场强震动记录的厚覆盖土层对长周期地震动影响分析.震灾防御技术,3(4):345-351
    许琨,王妙月.1999.空间域位置相关法道间插值.地球物理学进展,14(3):66-72
    许力生,陈运泰.2002.震源时间函数与震源破裂过程.地震地磁观测与研究,23(6):1-8
    杨庆山,姜海鹏.2002.基于相位差谱的时—频非平稳人造地震动的反应谱拟合.地震工程与工程振动,22(1):32-38
    张东良,孙建国2009.F-K反偏移中的插值映射.吉林大学学报:地球科学版,4:749-754
    张冬丽,陶夏新,周正华.近场地震动格林函数的解析法与数值法对比研究,西北地震学报.2004,26(3)
    张勇,冯万鹏,许力生,等.2008.2008年汶川大地震的时空破裂过程.中国科学:D辑,38(10):1186-1194
    张勇,许力生,陈运泰.2009.2008年汶川大地震震源机制的时空变化.地球物理学报,52(2):379-389
    章文波,于湘伟.1999年台湾集集大地震强地面运动的模拟.地震工程与工程振动,2010(3):1-11
    赵志新,赵昭,徐纪人,等.2006.用数值模拟格林函数方法合成近源地面运动地震图.科学通报,51(18):2181-2188
    中国地震局震害防御司.2008.汶川8.0级地震未校正加速度记录。中国强震记录汇报,第十二集,第一卷,北京:地震出版社.
    钟放庆,潘文根,等.2001.地下爆炸地震波的数值模拟及震源函数的研究.爆炸与冲击,21(1):53-56
    周仕勇,许忠淮,等.2001.伽师强震群震源特征及震源机制力学成因分析.地球物理学报,44(5):654-662
    周兴元.1997.f—x域地震道内插理论及实现.石油地球物理勘探,32(2):155-162
    祝贺君,张伟,陈晓非.2009.二维各向异性介质中地震波场的高阶同位网格有限差分模拟.地球物理学报,6:1536-1546
    Chen, Xiaofei, Quan, Youli Harris, Jerry M.,刘清林.利用广义反射和透射系数法合成径向多层介质中的地震记录[A].美国勘探地球物理学家学会第64届年会论文集[C],1994
    Spitz, S.,罗庚,1992.F—X域中的地震道内插.石油物探译丛,(01)1992:1-12
    Aki, K.1968. Seismic Displacements near a Fault. J. Geophys. Res.,73(16):5359-5376
    Aki, K., Bouchon, M., Reasenberg, P.1974. Seismic source function for an underground nuclear explosion. Bull. Seismol. Soc. Am.,64(1):131-148
    Alterman, Z., Karal, F. C., JR.1968. Propagation of elastic waves in layered media by finite difference methods. Bull. Seismol. Soc. Am.,58(1):367-398
    Ambraseys, N., Douglas, J., Sarma, S., et al.,2005. Equations for the Estimation of Strong Ground Motions from Shallow Crustal Earthquakes Using Data from Europe and the Middle East:Horizontal Peak Ground Acceleration and Spectral Acceleration. Bulletin of Earthquake Engineering,3(1):1-53
    Anderson, J. G., Yu, G.1996. Predictability of strong motions from the Northridge, California, earthquake. Bull. Seismol. Soc. Am.,86(1B):S100-114
    Andrews, D.J.,1976. Rupture propagating with finite stress in anti-plane strain, J. Geophys. Res., 81,3575-3582.
    Andrews, D.J.,1985. Dynamic plane-strain shear rupture with a slip-weakening friction law calculated by a boundary integral method, Bull. Seismol. Soc. Am.,75,1-21.
    Apsel, R. J., Luco, J. E.1983. On the Green's functions for a layered half-space. Part II. Bull. Seismol. Soc. Am.,73(4):931-951
    Atkinson, G. M., Boore, D. M.1998. Evaluation of models for earthquake source spectra in eastern North America. Bull. Seismol. Soc. Am.,88(4):917-934
    Atkinson, G. M., Silva, W.2000. Stochastic modeling of California ground motions. Bull. Seismol. Soc. Am.,90(2):255-274
    Beresnev, I. A., Atkinson, G. M.1997. Modeling finite-fault radiation from the wn spectrum. Bull. Seismol Soc. Am.,87(1):67-84
    Bjerrum, L. W., Sorensen, M. B., Atakan, K.2010. Strong Ground-Motion Simulation of the 12 May 2008 Mw 7.9 Wenchuan Earthquake, Using Various Slip Models. Bull. Seismol. Soc. Am.,100(5B):2396-2424
    Boore, D. M.,1983. Stochastic simulation of high-frequency ground motions based on seismological models of the radiated spectra. Bull. Seismol. Soc. Am.,73(6A):1865-1894
    Boore, D. M.2003. Simulation of Ground Motion Using the Stochastic Method. Pure and Applied Geophysics,160(3):635-676
    Bouchon, M.1978. A dynamic source model for the San Fernando earthquake. Bull. Seismol. Soc. Am.,68(6):1555-1576
    Bouchon, M.1979. Discrete Wave Number Representation of Elastic Wave Fields in Three-Space Dimensions. J. Geophys. Res.,84(B7):3609-3614
    Bouchon, M.,1981. A simple method to calculate Green's functions for elastic layered media. Bull. Seismol. Soc. Am.,71(4):959-971
    Bray, J. D., Rodriguez-Marek, A.2004. Characterization of forward-directivity ground motions in the near-fault region. Soil Dynamics and Earthquake Engineering,24(11):815-828
    Brocher, T. M.2005. A Regional View of Urban Sedimentary Basins in Northern California Based on Oil Industry Compressional-Wave Velocity and Density Logs. Bull. Seismol. Soc. Am., 95(6):2093-2114
    Brune, J. N.1970. Tectonic Stress and the Spectra of Seismic Shear Waves from Earthquakes. J. Geophys. Res.,75(26):4997-5009
    Chen, X. F.,1995. Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. Ⅱ. Applications for 2D SH case. Bull. Seismol. Soc. Am.,85(4):1094-1106
    Chen, X. F.,1996. Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. Ⅲ. Theory of 2D P-SV case. Bull. Seismol. Soc. Am.,86(2):389-405
    Chen, X. F.,1999. Seismogram Synthesis in Multi-layered Half-space Part I Theoretical Formulations. Earthquake Research in China, (02):53-78
    Chen, X. F.,1990. Seismogram synthesis for multi-layered media with irregular interfaces by global generalized reflection/transmission matrices method. I. Theory of two-dimensional SH case. Bull. Seismol Soc. Am.,80(6A):1696-1724
    Dalguer, L. A., Irikura, K., Riera, J. D., et al..2001. The Importance of the Dynamic Source Effects on Strong Ground Motion during the 1999 Chi-Chi, Taiwan, Earthquake:Brief Interpretation of the Damage Distribution on Buildings. Bull. Seismol. Soc. Am.,91(5): 1112-1127
    Fuchs, K., Muler, G.1971. Computation of Synthetic Seismograms with the Reflectivity Method and Comparison with Observations. Geophysical Journal of the Royal Astronomical Society, 23(4):417-433
    Ghasemi, H., Fukushima, Y., Koketsu, K., et al..2010. Ground-motion simulation for the 2008 Wenchuan, China, earthquake using the stochastic Finite-Fault Method. Bull. Seismol. Soc. Am.,100(5B):2476-2490
    Graves, R. W.1998. Three-dimensional finite-difference modeling of the San Andreas fault: Source parameterization and ground-motion levels. Bull. Seismol. Soc. Am.,88(4):881-897
    Greenfield, R. J.1995. Comment on "An efficient method for compouting green's functions for a layered half-space with sources and receivers at close depths" by Y. Hisada. Bull. Seismol. Soc. Am.,85(5):1523-1524
    Hanks, T. C.1979. b values and ω-γ seismic source models:implications for tectonic stress variations along active crustal fault zones and the estimation of high-frequency strong ground motion. J. Geophys. Res.,84(B5):2235-2242
    Hartzell, S., Harmsen, S., Frankel, A., et al..1999. Calculation of broadband time histories of ground motion: Comparison of methods and validation using strong-ground motion from the 1994 Northridge earthquake. Bull. Seismol. Soc. Am.,89(6):1484-1504
    Hartzell, S., Leeds, A., Frankel, A., et al..2002. Simulation of broadband ground motion including nonlinear soil effects for a magnitude 6.5 earthquake on the Seattle fault, Seattle, Washington. Bull. Seismol. Soc. Am.,92(2):831-853
    Hartzell, S. H.1978. Earthquake aftershocks as Green's functions. Geophys. Res. Lett.,5(1):1-4
    Helmberger, D. V.1968. The crust-mantle transition in the Bering Sea. Bull. Seismol. Soc. Am., 58(1):179-214
    Helmberger, D. V.1974. Generalized ray theory for shear dislocations. Bull. Seismol. Soc. Am., 64(1):45-64
    Herrera, I.1964. On a method to obtain a Green's function for a multi-layered half space. Bull. Seismol. Soc. Am.,54(4):1087-1096
    Housner, G. W.1947. Characteristics of strong-motion earthquakes. Bull. Seismol. Soc. Am., 37(1):19-31
    Houston, H., Benz, H. M., Vidale, J. E.1998. Time functions of deep earthquakes from broadband and short-period stacks. J. Geophys. Res.,103(B12):29895-29913
    Irikura, K.1983. Semi-empirical estimation of strong ground motions during large earthquakes. Bull. Disas. Prev. Res. Inst., Kyoto Univ.33(Part 2), No298:63-104
    Irikura, K.1986. Prediction of strong acceleration motions using empirical green's function. [C].Proc 7th Japan Earthq Eng Symp.151-156
    Irikura, K.,2000. Prediction of strong motions from future earthquakes casued by active faults-case of the Osaka basin, Proc. Of 12WCEE, Auckland.
    Langenheim, V. E., Graymer, R. W., Jachens, R. C.2006. Geophysical Setting of the 2000 ML 5.2 Yountville, California, Earthquake: Implications for Seismic Hazard in Napa Valley, California. Bull. Seismol. Soc. Am.,96(3):1192-1198
    Langenheim, V. E., Graymer, R. W., Jachens, R. C, et al.2010. Geophysical framework of the northern San Francisco Bay region, California. Geosphere,6(5):594-620
    Li, C. F., Li, Y. B.,2011. Identification of near-field pulse-like ground motions recorded at Bajiao sation during the minshock of the Great Wenchuan Earthquake, Advanced Materials Research 250-253:2546-2553
    Li, X. J., Zhou Z. H., Yu H. Y, et al.,2008. Strong motion observations and recordings from the great Wenchuan Earthquake. Earthquake Engineering & Engineering Viberation 7(3): 235-246
    Li, H., Michelini, A., Zhu, L., et al..2007. Crustal Velocity Structure in Italy from Analysis of Regional Seismic Waveforms. Bull. Seismol. Soc. Am.,97(6):2024-2039
    Li, X. J., Zhou, Z. H., Huang, M., et al..2008. Preliminary Analysis of Strong-Motion Recordings from the Magnitude 8.0 Wenchuan, China, Earthquake of 12 May 2008. Seismological Research Letters,79(6):844-854
    Luco, J. E., Apsel, R. J.1983. On the Green's functions for a layered half-space. Part I. Bull. Seismol Soc. Am.,73(4):909-929
    Mavroeidis, G. P., Papageorgiou, A. S.2010. Effect of Fault Rupture Characteristics on Near-Fault Strong Ground Motions. Bull. Seismol. Soc. Am.,100(1):37-58
    Mcmechan, G. A., Mooney, W. D.1980. Asymptotic ray theory and synthetic seismograms for laterally varying structures: theory and application to the imperial valley, California. Bull. Seismol. Soc. Am.,70(6):2021-2035
    Midorikawa, S.1993. Semi-empirical estimation of peak ground acceleration from large earthquakes. Tectonophysics,218(1-3):287-295
    Motazedian, D., Atkinson, G. M.2005. Stochastic Finite-Fault Modeling Based on a Dynamic Corner Frequency. Bull. Seismol. Soc. Am.,95(3):995-1010
    Nakamura T., Seiji Tsuboi, Yoshiyuki Kaneda, Yoshiko Yamanaka,2009. Rupture process of the 2008 Wenchuan, China earthquake inferred from teleseismic waveform inversion and forward modeling of broadband seismic waves[J]. Tectonophysics 491(l-4),72-84.
    Olson, A. H., Apsel, R. J.1982. Finite faults and inverse theory with applications to the 1979 Imperial Valley earthquake. Bull. Seismol. Soc. Am.,72(6A):1969-2001
    Ouimer, W. B.2009, Landslides associated with the May 12,2008 Wenchuan earthquake: Implications for the erosion and tectonic evolution of the Longmen Shan. Tectonophysics, 491(1-4),244-252
    Pitarka, A., Irikura, K., Iwata, T., et al.,1998. Three-dimensional simulation of the near-fault ground motion for the 1995 Hyogo-Ken Nanbu (Kobe), Japan, earthquake. Bull. Seismol. Soc. Am.,88(2):428-440
    Pitarka, A., Somerville, P., Fukushima, Y, et al.,2000. Simulation of near-fault strong-ground motion using hybrid green's functions. Bull. Seismol. Soc. Am.,90(3):566-586
    Pulido, N., Dalguer, L. A.2009. Estimation of the high-frequency radiation of the 2000 Tottori (Japan) Earthquake based on a dynamic model of fault rupture:application to the strong ground motion simulation. Bull. Seismol. Soc. Am.,99(4):2305-2322
    Singh, S. K., Pacheco, J., Ordaz, M., et al.,2000. Source time function and duration of mexican earthquakes. Bull. Seismol. Soc. Am.,90(2):468-482
    Somerville, P., M. Sen and B. Cohee,1991. Simulations of strong ground motions recorded during the 1985 Michoacan, Mexico and Valparaiso, Chile, earthquakes. Bull. Seism. Soc. Am., 81,1-27
    Somerville, P., Irikura, K., Graves, R., et al.,1999. Characterizing crustal earthquake slip models for the predietion of strong ground motion, Seism. Res. Lett.,70(1):59-80.
    Somerville, P.2000. Seismic hazard evaluation. Proceedings of 12th world conference on earthquake engineering Auckland,2833
    Spudich, P., Frazer, L. N.1984. Use of ray theory to calculate high-frequency radiation from earthquake sources having spatially variable rupture velocity and stress drop. Bull. Seismol. Soc. Am.,74(6):2061-2082
    Tang, Y., Zhang, J.2011. Response spectrum-oriented pulse identification and magnitude scaling of forward directivity pulses in near-fault ground motions. Soil Dynamics and Earthquake Engineering,31(1):59-76
    Tumarkin, A. G. and Archuleta, R. J.,1994. Empirical ground motion prediction. Annals of Geophysics.37(6),1691-1720.
    Chen, X. F.,2009. Preface to the special issue on the 2008 great Wenchuan earthquake. Earthq. Sci. (2009),22(2):107-108
    Xu, Y., Koper, K. D., Sufri, O., et al.,2009. Rupture imaging of the Mw7.9 12 May 2008 Wenchuan earthquake from back projection of teleseismicPwaves. Geochem. Geophys. Geosyst,10(4):Q04006
    Yao, Z. X., Harkrider, D. G.1983. A generalized reflection-transmission coefficient matrix and discrete wavenumber method for synthetic seismograms. Bull. Seismol. Soc. Am.,73(6A): 1685-1699
    Zeng, Y, Anderson, J. G.,2000. Earthquake source and near-field directivity modeling of several large earthquakes..EERI 6th International Conference on Seismic Zonation, Palm Springs.
    Zhang Haiming, Chen Xiaofei,2009. Dynamic rupture process of the 1999 Chi-Chi,Taiwan,earthquake. Earthquake Science,22:3-12
    Zhang, W., Shen, Y, Chen, X. F.,2008. Numerical simulation of strong ground motion for the Ms8.0 Wenchuan earthquake of 12 May 2008. Science in China Series D: Earth Sciences, 51(12):1673-1682
    Zhou, H., Chen, X.2008. The Localized Boundary Integral Equation-Discrete Wavenumber Method for Simulating P-SV Wave Scattering by an Irregular Topography. Bull. Seismol. Soc. Am.,98(1):265-279
    Zhou, H., Chen, X.2009. Localized Boundary Integral Equation-Discrete Wavenumber Method for Simulating Wave Propagation in Irregular Multiple Layers, Part II:Validation and Application. Bull. Seismol. Soc. Am.,99(3):1995-2011
    Zhou, H., Chen, X.2009. Localized Boundary Integral Equation-Discrete Wavenumber Method for Simulating Wave Propagation in Irregular Multiple Layers, Part I:Theory. Bull. Seismol. Soc. Am.,99(3):1984-1994

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700