用户名: 密码: 验证码:
miR-100在卵巢癌中的表达及其意义
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
卵巢癌是常见的妇科肿瘤,其死亡率居妇科肿瘤之首。晚期卵巢癌的5年生存率仅为20%-30%。卵巢癌起病隐匿,症状只有在疾病蔓延至腹膜腔表面时才表现出来,很难在早期发现和诊断。但在这个时期,已不能通过手术清除所有病灶,导致手术后的再次复发。因此,晚期卵巢癌主要的治疗方案为化学治疗,但卵巢癌通常呈进展状态且易对化疗药物产生耐受性。所以,进一步研究卵巢癌的发病机制、寻找新的有效治疗卵巢癌的方法对治疗和手术后预防复发有非常重要的意义。MicroRNAs是近年来发现的一类在转录水平调控基因表达的、长度约为18-24个左右的核糖核酸分子,通过与靶基因的mRNA-3′UTR区域配对调控基因的表达。已证明,miRNAs能够调控多种生理学和病理学的过程,如细胞分化、细胞增殖和肿瘤形成。miRNAs可作为癌基因或抑癌基因,参与调节人类肿瘤形成的多个信号通路途径。有学者利用miRNA表达谱芯片等多种方法对卵巢肿瘤和正常女性卵巢组织的miRNAs表达进行检测,发现卵巢癌中miR-100等多种miRNAs异常表达,但目前miRNAs在卵巢癌中的具体作用机制尚未明确。我们通过RT-PCR分析九例卵巢浆液性癌和四例卵巢正常组织中miR-100的表达发现,与正常卵巢组织相比,卵巢浆液性癌中的miR-100表达下调。同时,我们发现在卵巢癌细胞株中过表达miR-100可以减低卵巢癌细胞对顺铂的耐药性,但并不影响卵巢癌细胞的生长;通过动物试验利用裸鼠在体内分析肿瘤新生血管生成,发现过表达miR-100可抑制卵巢癌的新生血管生成。为明确miR-100在卵巢癌中的作用机制,我们通过荧光素酶报告基因证明miR-100直接靶向mTOR-3′UTR并抑制其表达。我们推测miR-100对mTOR的调节可能在卵巢癌形成和新的血管生成过程中有重要的作用。这一研究结果有助于了解miR-100在卵巢癌发生中的作用,为预防和治疗卵巢癌提供理论依据。
Ovarian cancer is the most common and the leading cause of death from gynecological malignancy. The 5-year survival rate of advanced ovarian cancer is only 20%-30%. The symptoms of ovarian cancer are generally observed only after the cancer has spread to the surface of the peritoneal cavity. At this stage, it is impossible to surgically remove all apparent lesions, and this accounts for the high rate of cancer recurrence after surgery. Hence, advanced ovarian cancer is the major interest in chemoprevention research. Chemotherapy is the major strategy for the treatment of advanced ovarian cancer, but the disease of this stage usually deteriorates. The cancer cells are prone to gain the capacity of drug resistance against chemotherapeutic agents. Thus, it is very important to further explore the pathogenesis of ovarian cancer, and to find new and effective treatment of ovarian cancer for diagnosis and prevention after operation. MicroRNAs (miRNAs) are evolutionarily conserved, endogenous, small, noncoding, RNA molecules of about 22 nuleotides in length that function as post-transcriptional gene regulators. miRNAs inhibit the expression of target genes by affecting the translation or stability of target mRNA by binding to a target site in the 3′-UTR of target mRNAs. It is revealed that miRNAs regulate various physiological and pathological pathways such as cell differentiation, cell proliferation and tumoriogenesis. miRNAs may function as oncogenes or tumor suppressors, and they involved in many cell signal pathways of tumor formation. Some researcher analyzed miRNAs expression in ovarian tumors and normal ovarian tissues by hybridization of the array. They found some miRNA and miR-100 are down-regulated in ovarian tumors, but the mechanism of miRNAs in ovarian cancer is still not very clear. We analyzed miR-100 expression in 9 serous ovarian cancer tissues and 4 normal ovarian tissues by RT-PCR and proved miR-100 was down-regulated in tumors. In ovarian cancer cell lines, overexpressing miR-100 can reduce ovarian cancer cells resistant to cisplatin and inhibit ovarian cancer tumor angiogenesis in vivo, but do not change the growth of ovarian cancer. We showed miR-100 directly targeting mTOR-3′UTR and inhibited mTOR expression by luciferase assay. So we speculate that miR-100 maybe plays an important role in the ovarian cancer tumorigenesis and angiogenesis through inhibition of mTOR translation. We will further clarify the mechanisms of miR-100 in the ovarian cancer tumorigenesis and angiogenesis and build the network of signaling pathways. Our work may shed light in new strategies for ovarian tumor therapy in future.
引文
1. Greenlee RT, Hill-Harmon MB, Murray T and Thun M. Cancer statistics, 2001; CA Cancer J. Clin. 51, 15–36.
    2. Chiaffarino F, Pelucchi C, Parazzini F, Negri E, Franceschi S, Talamini R, Conti E, Montella M, La Vecchia C. Reproductive and hormonal factors and ovarian cancer. Ann Oncol. 2001; 12(3): 337-41.
    3. Venn A, Healy D, McLachlan R. Cancer risks associated with the diagnosis of infertility. Best Pract Res Clin Obstet Gynaecol. 2003; 17(2): 343-67.
    4. Gallion HH, Smith SA. Hereditary ovarian carcinoma. Semin Surg Oncol. 1994; 10(4): 249-54.
    5. Grindedal EM, Renkonen-Sinisalo L, Vasen H, Evans G, Sala P, Blanco I, Gronwald J, Apold J, Eccles DM, Sánchez AA, Sampson J, J?rvinen HJ, Bertario L, Crawford GC, Stormorken AT, Maehle L, Moller P.Survival in women with MMR mutations and ovarian cancer: a multicentre study in Lynch syndrome kindreds. J Med Genet. 2010; 47(2): 99-102.
    6. The National Board of Health and Welfare, Official Statistics of Sweden. Cancer incidence in Sweden. Stockholm, Sweden: Centre for Epidemiology, 1999.
    7. RosanòL, Di Castro V, Spinella F, Tortora G, Nicotra MR, Natali PG, Bagnato A. Combined targeting of endothelin A receptor and epidermal growth factor receptor in ovarian cancer shows enhanced antitumor activity. Cancer Res. 2007; 67(13): 6351-9.
    8. Meng Q, Xia C, Fang J, Rojanasakul Y, Jiang BH. Role of PI3K and AKT specific isoforms in ovarian cancer cell migration, invasion and proliferation through the p70S6K1 pathway. Cell Signal. 2006; 18(12): 2262-71.
    9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell,2004;116(2):281-297.
    10. Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993; 75: 843-854.
    11. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21 nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 2000; 403(6772): 901-906.
    12. Ambros V. The functions of animal microRNAs. Nature, 2004; 431(7006):350-355.
    13. Lee Y, Jeon K, Lee JT, Kim S, Kim VN. MicroRNA maturation: stepwise processing and subcellular localization. EMBO J, 2002; 21(17):4663-4670.
    14. Lim LP, Lau NC, Garrett-Engele P, Grimson A, Schelter JM, Castle J, Bartel DP, Linsley PS, Johnson JM. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature, 2005; 433(7027):769-773.
    15. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005; 120(1):15-20.
    16. Sevignani C, Calin GA, Siracusa LD, Croce CM. Mammalian microRNAs: a small world for fine-tuning gene expression. Mamm Genome, 2006; 17(3):189-202.
    17. Gartel AL, Kandel ES. RNA interference in cancer. Biomol Eng, 2006; 23 (1): 17-34.
    18. Mourelatos Z, Dostie J, Paushkin S, Sharma A, Charroux B, Abel L, Rappsilber J, Mann M, Dreyfuss G. miRNAs: A novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev, 2002; 16(6): 720-728.
    19. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancer. Proc Natl Acad Sci USA, 2004; 101(9): 2999-3004.
    20. Zhang L, Huang J, Yang N, Greshock J, Megraw MS, Giannakakis A, Liang S, Naylor TL, Barchetti A, Ward MR, Yao G, Medina A, O'brien-Jenkins A, Katsaros D, Hatzigeorgiou A, Gimotty PA, Weber BL, Coukos G. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci USA, 2006; 103(24): 9136-9141.
    21. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res, 2007; 67(18): 8699-8707.
    22. Laios A, O'Toole S, Flavin R, Martin C, Kelly L, Ring M, Finn SP, Barrett C, Loda M, Gleeson N, D'Arcy T, McGuinness E, Sheils O, Sheppard B, O' Leary J.Potential role of miR-9 and miR-223 in recurrent ovarian cancer. Mol Cancer, 2008; 7: 35.
    23. Yang H, Kong W, He L, Zhao JJ, O'Donnell JD, Wang J, Wenham RM, Coppola D, Kruk PA, Nicosia SV, Cheng JQ. MicroRNA expression profiling in human ovarian cancer: miR-214 induces cell survival and cisplatin resistance by targeting PTEN. Cancer Res, 2008; 68(2): 425-433.
    24. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res, 2008; 14(9): 2690-2695.
    25. Zhang L, Volinia S, Bonome T, Calin GA, Greshock J, Yang N, Liu CG, Giannakakis A, Alexiou P, Hasegawa K, Johnstone CN, Megraw MS, Adams S, Lassus H, Huang J, Kaur S, Liang S, Sethupathy P, Leminen A, Simossis VA,Sandaltzopoulos R, Naomoto Y, Katsaros D, Gimotty PA, DeMichele A, Huang Q, Bützow R, Rustgi AK, Weber BL, Birrer MJ, Hatzigeorgiou AG, Croce CM, Coukos G. Genomic and epigenetic alterations deregulate microRNA expression in human epithelial ovarian cancer. Proc Natl Acad Sci USA, 2008; 105(19): 7004-7009.
    26. Park SM, Shell S, Radjabi AR, Schickel R, Feig C, Boyerinas B, Dinulescu DM, Lengyel E, Peter ME. Let-7 expression defines two differentiation stages of cancer. Proc Natl Acad Sci USA, 2007; 104(27): 11400-11405.
    27. Corney DC, Flesken-Nikitin A, Godwin AK, Wang W, Nikitin AY. MicroRNA-34b and MicroRNA-34c are targets of p53 and cooperate in control of cell proliferation and adhesion - independent growth. Cancer Res, 2007; 67(18): 8433-8438.
    28. Tsuda N, Kawano K, Efferson CL, Ioannides CG. Synthetic microRNA and double-stranded RNA targeting the 3’-untranslated region of HER-2/neu mRNA inhibit HER-2 protein expression in ovarian cancer cells. Int J Oncol, 2005; 27(5): 1299-1306.
    29. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci, 2004; 101.(9)2999-3004.
    30. He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe SW, Hannon GJ, Hammond SM.A microRNA polycistron as a potential human oncogene.Nature,2005; 435(7043):828-833.
    31. O'Donnell KA, Wentzel EA, Zeller KI, Dang CV, Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature,2005; 435(7043):839- 843.
    32. Michael MZ, O' Connor SM, van Holst Pellekaan NG, Young GP, James RJ.Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res,2003;1(12):882-891.
    33. Shi W, Alajez NM, Bastianutto C, Hui AB, Mocanu JD, Ito E, Busson P, Lo KW, Ng R, Waldron J, O'Sullivan B, Liu FF. Significance of Plk1 regulation by miR-100 in human nasopharyngeal cancer. Int J Cancer. 2010; 126(9):2036-48.
    34. Satzger I, Mattern A, Kuettler U, Weinspach D, Voelker B, Kapp A, Gutzmer R. MicroRNA-15b represents an independent prognostic parameter and is correlated with tumor cell proliferation and apoptosis in malignant melanoma. Int J Cancer. 2010; 126(11):2553-62.
    35. Pantuck AJ, Seligson DB, Klatte T, Yu H, Leppert JT, Moore L, O'Toole T, Gibbons J, Belldegrun AS, Figlin RA. Prognostic relevance of the mTOR pathway in renal cell carcinoma: implications for molecular patient selection for targeted therapy. Cancer, 2007; 109(11): 2257-2267.
    36. Inoki K, Zhu T, Guan KL. TSC2 mediates cellular energy response to control cell growth and survival. Cell. 2003 ;115(5):577-90.
    37. Yang X, Fraser M, Abedini MR, Bai T, Tsang BK. Regulation of apoptosis -inducing factor-mediated, cisplatin-induced apoptosis by Akt.Br J Cancer, 2008; 98(4):803-808.
    38. Jain, R. K. Tumor angiogenesis and accessibility: role of vascular endothelial growth factor. Semin. Oncol. 29:3-9; 2002.
    39. Kiselyov A, Balakin KV, Tkachenko SE. VEGF/VEGFR signaling as a target for inhibiting angiogenesis. Expert Opin Investig Drugs, 2007; 16(1):83-107.
    40. Fish JE, Santoro MM, Morton SU, Yu S, Yeh RF, Wythe JD, Ivey KN, Bruneau BG, Stainier DY, Srivastava D.miR-126 regulates angiogenic signaling and vascular integrity. Dev Cell, 2008; 15(2): 272-284.
    41. Chen Y, David H. Regulation of angiogenesis through a microRNA(miR-130a)that down-regulates antiangiogenic homeobox genes GAX and HOXA5. Blood, 2008; 111(3): 1217-1226.
    42. Lee DY, Deng Z, Wang CH, Yang BB. MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA, 2007; 104(51): 20350-20355.
    1. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004; 116(2):281-297.
    2. Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell, 2005; 120(1):15-20.
    3. Lee RC, Feinbaum RL, Ambros V. The C.elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 1993; 75:843-854.
    4. Reinhart BJ, Slack FJ, Basson M, Pasquinelli AE, Bettinger JC, Rougvie AE, Horvitz HR, Ruvkun G. The 21 nucleotide let-7 RNA regulates developmentaltiming in Caenorhabditis elegans. Nature, 2000; 403(6772):901-906.
    5. Cummins JM, Velculescu VE. Implications of micro-RNA profiling for cancer diagnosis. Oncogene, 2006; 25(64): 220–227.
    6. Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN. Molecular basis for the recognition of primary microRNAs by the Drosha3 /DGCR8 complex. Cell, 2006; 125(5):887-901.
    7. Eulalio A, Behm-Ansmant I, Izaurralde E. P-bodies: At the crossroads of post-transcriptional pathways. Nat Rev Mol Cell Biol, 2007; 8(1):9-22.
    8. Calin GA, Sevignani C, Dumitru CD, Hyslop T, Noch E, Yendamuri S, Shimizu M, Rattan S, Bullrich F, Negrini M, Croce CM. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancer. Pros Natl Acad Sci, 2004; 101(9):2999-3004.
    9. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, Magri E, Pedriali M, Fabbri M, Campiglio M, Ménard S, Palazzo JP, Rosenberg A, Musiani P, Volinia S, Nenci I, Calin GA, Querzoli P, Negrini M, Croce CM. MicroRNA gene expression deregulation in human breast cancer. Cancer Res, 2005; 65(16):7065-7070.
    10. Scott GK, Goga A, Bhaumik D, Berger CE, Sullivan CS, Benz CC. Coordinate suppression of ERBB2 and ERBB3 by enforced expression of micro-RNA: miR-125a or miR-125b. J Biol Chem, 2007; 282:1479–1486.
    11. Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada H, Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, Mitsudomi T, Takahashi T. Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res, 2004; 64(11):3753-3756.
    12. Hayashita Y, Osada H, Tatematsu Y, Yamada H, Yanagisawa K, Tomida S, Yatabe Y, Kawahara K, Sekido Y, Takahashi T. A Polycistronic microRNAcluster,miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res, 2005; 65(21):9628-9632.
    13. Tang JM, He QY, Guo RX, Chang XJ. Phosphorylated Akt overexpression and loss of PTEN expression in non-small cell lung cancer confers poor prognosis.Lung Cancer, 2006; 51(2):181-191.
    14. Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM. Frequent deletions and down-regulation of micro-RNA genes miR-15 and miR-16 at 13q14 in chronic lymphocytic leukemia.Proc Natl Acad Sci, 2002; 99(24):15524-15529.
    15. Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M, Wojcik SE, Aqeilan RI, Zupo S, Dono M, Rassenti L, Alder H, Volinia S, Liu CG, Kipps TJ, Negrini M, Croce CM.miR-15 and miR-16 induce apoptosis by targeting BCL-2. Proc Natl Acad Sci, 2005; 102(39):13944-13949.
    16. Murakami Y, Yasuda T, Saigo K, Urashima T, Toyoda H, Okanoue T, Shimotohno K. Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene,2006; 25(17):2537-2545.
    17. Kutay H, Bai S, Datta J, Motiwala T, Pogribny I, Frankel W, Jacob ST, Ghoshal K. Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem, 2006; 99(3):671-678.
    18. Lin CJ, Gong HY, Tseng HC, Wang WL, Wu JL. miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun, 2008; 375(3):315?320.
    19. Wang Y, Lee AT, Ma JZ, Wang J, Ren J, Yang Y, Tantoso E, Li KB, Ooi LL, Tan P, Lee CG. Profiling microRNA expression in hepatocellularcarcinoma reveals microRNA-224 up-regulation and apoptosis inhibitor-5 as a microRNA-224 specific target. J Biol Chem, 2008; 283:13205-13215.
    20. CiafrèSA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, Negrini M, Maira G, Croce CM, Farace MG. Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun, 2005; 334(4):1351-1358.
    21. Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res, 2005; 65(14):6029-6033.
    22. Iorio MV, Visone R, Di Leva G, Donati V, Petrocca F, Casalini P, Taccioli C, Volinia S, Liu CG, Alder H, Calin GA, Ménard S, Croce CM. MicroRNA signatures in human ovarian cancer. Cancer Res, 2007; 67:8699-8707.
    23. Nam EJ, Yoon H, Kim SW, Kim H, Kim YT, Kim JH, Kim JW, Kim S. MicroRNA expressionp rofiles in serous ovarian carcinoma. Clin Cancer Res, 2008; 14:2690-2695.
    24. Dahiya N, Sherman-Baust CA, Wang TL, Davidson B, Shih IeM, Zhang Y, Wood W 3rd, Becker KG, Morin PJ.MicroRNA expression and identification of putative miRNA targets in ovarian cancer. PLoS One, 2008; 3(6):e2436.
    25. Eis PS, Tam W, Sun L, Chadburn A, Li Z, Gomez MF, Lund E, Dahlberg JE.Accumulation ofmiR-155 and BIC RNA in human B cell lymphomas. Proc Natl Acad Sci, 2005; 10(102):3627-3632.
    26. Felli N, Fontana L, Pelosi E, Botta R, Bonci D, Facchiano F, Liuzzi F, Lulli V, Morsilli O, Santoro S, Valtieri M, Calin GA, Liu CG, Sorrentino A, Croce CM, Peschle C. MicroRNAs 221 and 222 inhibit normal erythropoiesis and erythroleukemic cell growth via kit receptor down-modulation. Proc Natl Acad Sci, 2005; 102(50):18081-18086.
    27. Chen X, Guo X, Zhang H, Xiang Y, Chen J, Yin Y, Cai X, Wang K, Wang G, Ba Y, Zhu L, Wang J, Yang R, Zhang Y, Ren Z, Zen K, Zhang J, Zhang CY. Role ofmiR-143 targeting KRAS in colorectal tumorigenesis. Oncogene, 2009; 28(10):1385-1392.
    28. Meister G, Landthaler M, Dorsett Y, Tuschl T. Sequence-specific inhibition of microRNA-and siRNA-induced RNA silencing. RNA, 2004; 10(3):544-550.
    29. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert BL, Mak RH, Ferrando AA, Downing JR, Jacks T, Horvitz HR, Golub TR. MicroRNA expression profiles classify human cancers. Nature, 2005; 435(7043):834-838.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700