用户名: 密码: 验证码:
Pseudomonas syringae致病变种的分子鉴定技术及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物病原丁香假单胞菌(Pseudomonas syringae)根据其寄主植物以及所致病害的不同症状被分为许多致病变种(pathovar)。致病变种的鉴定是一项重要的基础工作,通常依据一系列复杂的理化特征等细菌学方法来鉴定。随着分子生物学技术的飞速发展,核酸杂交技术、基因组DNA指纹图谱分析技术、保守基因以及特定基因的序列分析技术,为植物病原丁香假单胞菌基因组种团(genomospecies)的划分以及致病变种的鉴定提供了先进方法。
     本研究通过分析16S rDNA、16S-23S ITS、hrp基因在丁香假单胞菌致病变种鉴定中的可能作用,并把分子鉴定结果与常规的细菌学鉴定结果相互验证,旨在筛选出适于丁香假单胞菌致病变种快速鉴定的指标分子,建立一整套快速鉴定致病变种的分子鉴定技术体系。
     本研究所取得的主要结果如下:
     1.以来自8个丁香假单胞菌致病变种P. s. pv. tomato、P. s. pv. angulata、P. s. pv. tabaci、P. s. pv. syringae、P. s. pv. garcae、P.s. pv. glycinea、P. s. pv. phaseolicola、P. s. pv. maculicola以及相关菌株P. viridiflava、P. gingeri的共16个标准菌株的基因组DNA为模板,利用16S rDNA通用引物进行PCR扩增,得到长度约为1560bp的特异性条带,通过T/A克隆获得含有目标片段的重组质粒,经测序得到了各致病变种16S rDNA基因的近全长序列。序列Blast同源性检索以及序列系统进化分析结果显示:植物假单胞病菌的16S rDNA序列高度保守,适于属以及种水平上的鉴定。丁香假单胞菌的16S rDNA序列更为保守,16S rDNA基因的系统发育分析表明,这一高度保守的16S rDNA基因不能满足丁香假单胞菌致病变种分子鉴定的要求。
     2.利用16S-23S rDNA的保守序列设计了扩增ITS全长序列的简并引物,以8个丁香假单胞菌致病变种的16个标准菌株的基因组DNA为模板进行PCR扩增,得到长度为750bp的特异性条带。PCR产物分别经限定性内切酶HincⅡ及DdeⅠ酶切片段的RFLP分析表明,丁香假单胞菌的16S-23S ITS同样高度保守,P. syringae 8个致病变种的ITS扩增产物的RFLP图谱没有足够的多态性用来鉴别致病变种,仅有P. gingeri、P. viridiflava与P. syringae各致病变种的ITS-PCR-RFLP图谱明显不同。因此,ITS序列同样不是丁香假单胞菌致病变种分子鉴定的理想指标。
     3. hrpZ基因是病原细菌所独有的,其编码产物既与致病性又与诱导非寄主的过敏性有关。利用设计的4对hrpZ基因引物,以丁香假单胞菌致病变种P. s. pv. tomato、P. s. pv. angulata、P. s. pv. tabaci、P. s. pv. syringae、P.s. pv. garcae、P. s. pv. glycinea、P. s. pv. phaseolicola、P. s. pv. maculicola及其它相关供试菌株P. viridiflava、P. gingeri的基因组DNA为PCR扩增模板,分析了hrpZ基因的PCR扩增片段长度多态性。结果表明,引物对HrpABF/R能够有效区分全部8个供试丁香假单胞菌致病变种;引物对HrpZ08F/R1与HrpZ359/1115对于P. s. pv. garcae以及相关菌株无特异性扩增结果或者多态性结果。引物对HrpZ09UP/DW对供试菌株也有特异性或多态性扩增结果,且在P. s. pv. syringae不同菌株之间存在条带亮度差异。除引物对HrpABF/R外,引物对HrpZ08F/R、HrpZ09UP/DW与HrpZ359/1115都不能对P. s. pv. angulala和P. s. pv. tabaci进行有效区分,说明了P. s. pv. angulata和P. s. pv. tabaci二者的hrpZ可能相同。与16S rDNA以及ITS相比,hrpZ基因的PCR扩增产物的多态性在致病变种间非常丰富,而且致病变种内的保守性强,扩增结果清晰易辩。hrpZ基因的系统进化分析也表明了该基因是丁香假单胞菌致病变种快速鉴定的理想分子指标。
     4.常规细菌学鉴定实验表明,细菌形态特征、经典LOPAT以及GATTa等一系列理化鉴定结果与基于hrpZ基因的分子鉴定结果相一致,但基于hrpZ的分子鉴定具有快速、准确、易操作、结果客观等独特优势,说明本研究成功建立了基于hrpZ基因的致病变种分子鉴定技术体系,为植物病原丁香假单胞菌及其致病变种的快速鉴定提供了一个有效策略。
     5.本研究中多次发现野火致病变种与角斑致病变种在形态学特性、理化特性、PCR扩增特点等十分相似。为了区分二者,利用设计的引物对tabAF/R的特异性扩增区分了P. s. pv. angulata和P. s. pv. tabaci两个致病变种。结果表明野火致病变种P. s. pv. tabaci能够得到片段长度1263bp的特异性条带,而角斑致病变种P. s. pv. angulata则没有该特异性条带。说明能够利用特定基因(即烟毒素编码基因)的扩增策略能够区分开tab+菌株和tab-菌株。
     6.利用本研究建立的基于hrpZ基因以及tabA基因的分子鉴定技术体系,成功地对豫西烟草细菌性叶斑病进行了病原菌的快速鉴定,最终确定该细菌性叶斑病的病原为P. s. pv. tabaci的tab-菌株(即P. s. pv. angulata),这一鉴定结果同样得到了常规细菌学鉴定的验证与支持。
Pseudomonas syringae group includes a number of pathovars that vary in their host range and/or disease symptoms. The traditional bacteriological identification is a basic but important work, including a series of physiological and morphyological characteristics tests. With the development of molecular biological technology, DNA-DNA hybridization, genomic DNA fingerprint analysis and DNA sequence analysis of conservative genes and special genes have been used to distinguish the strains or pathovars of P. syringae and to classify P. syringae into several groups-genomospecies.
     In order to screen some useful molecular identification marker and build up a new available strategy,8 pathovars and their 16 identified strains were used. Their 16S rDNA genes were sequenced, the 16S-23S rDNA internal transcriptional spacer sequences were analysed by PCR-RFLP, and one important hypersensitive-response and pathogenesis related gene, hrpZ gene was cloned and analysied. At the same time, the traditional bacteriological identification were performed for the validity of the established molecular identification strategy.
     The main results of this study were followed:
     1. Sixteen standard strains belonging to eight Pseudomonas syringae pathvars including P. s. pv. tomato, P. s. pv. angulata, P. s. pv. tabaci, P. s. pv. syringae, P. s. pv. garcae, P. s. pv. glycinea, P. s. pv. phaseolicola, P. s. pv. maculicola and two strains from P. viridiflava and P. gingeri were used in the experiments. The full sequences of 16S rDNA gene were cloned with the universal 16S rDNA primers. The unique, band of about 1560bp in size were recovered, cloned and sequenced. These sequences were blasted in Genebank database for researching their homologies. According to the results of phylogenetic analysis,16S rDNA sequences were so highly conservative that they only were an available molecular marker for genus and species identification of Pseudomonas syringae. However, the 16S rDNA sequence was not a useful molecular marker for pathvar determination.
     2. The full-length ITS of the tested strains were amplified by PCR with the degenerate primers. Unique product of about 750bp in size were recovered and degested with HincⅡand DdeⅠ, respectively, in order to analyse the PCR-RFLP. The results showed that there just were some differences at inter-species level, while revealing highly consistent at inter-pathovar and intra-pathovar level. Therefore, the ITS sequence was neither an ideal molecular marker.
     3. The hrp genes in plant pathogenic bacteria play important roles in causing disease on host plants and eliciting hypersensitive response on non-host plants. The sequences of hrpZ gene of the tested strains were amplified by PCR with the degenerate primers. The sequence polymorphism of hrpZ gene were analyzed and the NJ-tree was constructed. The target fragments coule be amplified with HrpABF/HrpABR, HrpZ09UP/HrpZ09DW primers, and also distinguished by HrpZ08F/HrpZ08Rl and HrpZ359/HrpZl 115 but for P. s. pv. garcae and related strain P. viridiflava and P. gingeri. We also found that there were some differences between the tested strains of P. s. pv. syringae. Comparing with the 16S rDNA and ITS molecular marker, as a new molecular identification marker hrpZ gene was very conservative in different strains of a certain Pseudomonas syringae pathvar and highly homologous in different pathvars. The differences between the tested pathvars could be detected clearly. In conclusion, hrpZ gene was a perfect molecular marker for the rapid identification of Pseudomonas syringae pathvars.
     4. Consistent with the trantional identification results, which were based on characteristics of physical and chemical, hrpZ-based molecular identification with clear and objective result was much more rapid, accurate and easy to carry out. It revealed us that as the special gene hrpZ was a new perfect molecular identification marker and the strategy based on this gene was viable.
     5. During the study, usually, P. s. pv. angulata and P. s. pv. tabaci were not only familiar with most of the characteristics of physical and chemical, but also with the same band amplified by PCR. To differentiate P. s. pv. angulata from P. s. pv. tabaci, tabAF/tabAR primers were designed for amplification by PCR. P. s. pv. angulata lacked this special band as a important feature and was distinguished from P. s. pv. tabaci. Thus the tab A gene was another useful molecular marker, which was used to distinguish the two pathvars.
     6. Using the molecular identification technology strategy, it was successful to identify the pathogen causing bacterial leaf spot on tobacco in the west of Henan province. The pathogen was tab- strain of P. s. pv. tabaci. At the same time the identified result was validated by the characteristics of physical and chemical.
引文
1. 东秀珠,蔡妙英,等.常见细菌系统鉴定手册[M].科学出版社,2001.
    2. 方中达.植病研究方法(第三版)[M].中国农业出版社,1998.
    3. 房保海,张广民,迟长凤,等.植物病原细菌hrp基因研究进展[J].微生物学通报,2003,30(2):102-106.
    4. 高岩,胡白石,王福祥,等.玉米细菌性条斑病病原细菌的鉴定[J].江苏农业学报,2007,23(1):22-25.
    5. 郭坚华,蔡永健,陈永芳,等.植物病原棒形细菌的分类研究进展[J].微生物学通报,2002,29(1):74-79.
    6.郭亚辉,郭坚华,李斌.根据16SrRNA序列对假单胞菌属分类学的研究进展[J].微生物学杂志,2004,24(2):38-41.
    7. 何晨阳,王金生.含hrp基因的克隆片段在水稻白叶枯病菌不同小种中的功能和同源性[J].植物病理学报,1994,24(1):14-20.
    8. 何煜波,胡秀芳,陈海敏,等.半夏细菌性软腐病原菌的分离及鉴定[J].植物病理学报,2007,37(4):337-342.
    9. 胡芸,李茜茜,蔡皓,等.]株高冰核活性细菌的分离与鉴定[J].华中农业大学学报,2008,27(2):243-247.
    10.黄琼,孙启明,姬广海,等.蚕豆茎疫病菌rep-PCR初析[J].西南农业学报,2003,16(1):74-77.
    11.回文广,赵廷昌,Schaad N W,等.哈密瓜细菌性果斑病菌快速检测方法的建立[J].中国农业科学,2007,40(11):2495-2501.
    12.姬广海,方敦煌,殷端,等.香料烟细菌性斑点病病原鉴定[J].植物病理学报,2007,37(3):232-236.
    13.姬广海,魏兰芳,张世光.PCR技术在植物病原细菌研究中的应用[J].微生物学通报,2002,29(4):77-81.
    14.姬广海,许志刚,张世光.植物病原细菌的BIOLOG系统鉴定及其多元统计初析[J].山东农业大学学报(自然科学版),2001,32(4):467-470.
    15.焦振泉,刘秀梅.细菌分类与鉴定的新热点:16S-23S rDNA间区[J].微生物学通报,2001,28(1):85-89.
    16.李亚利.甜瓜细菌性叶斑病的寄主范围测定、16SrDNA鉴定及西瓜细菌性果斑病菌的PCR检测[D].甘肃农业大学硕士学位论文,20060606.
    17.刘汉珍,郭坚华.桔梗叶斑病病原细菌的鉴定[J].南京农业大学学报,2002,25(4):41-44.
    18.刘鹏,黄国明,刘勇,等.菊欧文氏菌分子检测技术的研究[J].植物病理学报,2007, 37(6):584-587.
    19.刘鹏,魏亚东,崔铁军Blolog系统和16SrDNA序列分析方法在植物病原细菌鉴定中的应用[J].植物检疫,2006,20(2):86-87.
    20.刘雅婷,李永忠,张世珖,等.云南烟草野火病菌遗传多样性分析[J].西南农业大学学报,2001,23(6):514-517.
    21.刘雅婷,张世珖,李永忠,等.烟草野火病菌的快速检测[J].西北农林科技大学学报(自然科学版),2002,30(6):138-143.
    22.刘雅婷,张世珖,李永忠,等.云南烟草野火病病原细菌(Pseudomonas syringae pv. tabaci)鉴定[J].云南农业大学学报,2002,17(1):4-9.
    23.刘招舰,丁爱云,张新建,等.山东省植物上冰核活性细菌种类与分布研究[J].山东农业大学学报(自然科学版),2002,33(3):326-330.
    24.罗金燕,徐福寿,王平,等.水稻细菌性谷枯病病原菌的分离鉴定[J].中国水稻科学,2008,22(1):82-86.
    25.罗来鑫,赵廷昌,李健强,等.番茄细菌性溃疡病研究进展[J].中国农业科学,2004,37(8):1144-1150.
    26.罗志萍,柑橘溃疡病菌的分子鉴定及检测技术研究[J].华中农业大学学位论文,20060622.
    27.彭小明.基于16SrDNA序列的14株致病杆菌属细菌的分子鉴定[J].中山大学硕士论文,2007.
    28.邱文,徐福寿,谢关林,徐丽慧,等.引起梨花枯和芽枯的Pseudomonas syringae pv.syringae病原细菌鉴定.中国农业科学,2008,41(9):2657-2662.
    29.任欣正.植物病原细菌的分类和鉴定[M].农业出版社,1994.
    30.宋卡魏,王星云,张荣意.PCR相关技术在植物病原细菌检测和鉴定中的应用[J].广西热带农业,2006(4):45-47.
    31.王长军,唐家琪.病原菌毒力岛研究进展[J].生物技术通讯,2008,19(2):265-270.
    32.王金生.分子植物病理学(第一版)[M].中国农业出版社.1999.
    33.王金生.植物病原细菌学(第一版)[M].中国农业出版社,2000.
    34.王振军,刘玉霞,刘新涛,等.用16SrDNA序列分析方法鉴定4个拮抗细菌[J].河南农业科学,2006(5):59-61.
    35.魏兰芳,姬广海,张世光.云南马铃薯青枯病菌的PCR检测[J].西南农业大学学报,2002,24(1):72-74.
    36.夏明星,赵文军,马青,等.植物病原细菌DNA分子检测技术[J].植物检疫,2005,19(1):39-42.
    37.谢关林.水稻病原细菌鉴定方法的比较研究[J].浙江大学学报(农业与生命科学版), 2000,26(4):353-358.
    38.徐福寿,沈筱玉,谢关林,等.小麦细菌性叶鞘褐腐病及其病原鉴定[J].植物保护学报,2007,34(1):27-31.
    39.徐丽慧,邱文,张唯一,等.水稻细菌性褐条病病原的鉴定[J].中国水稻科学,2008,22(3):302-306.
    40.徐丽慧,徐福寿,李芳,等.桑细菌性青枯病病原及其生化型鉴定[J].植物保护学报,2007,34(2):141-146.
    41.徐玲,李福元.烟草野火病病原细菌的鉴定[J].保山师专学报,2007,26(5):29-31.
    42.徐玲,张世珖,王绍坤,等.云南烟草野火病病原细菌的鉴定[J].烟草农业科学,2006,2(1):50-54.
    43.徐玲,张世珧.云南省烟草野火病菌毒素的致病性评价[J].云南农业大学学报,2007,22(5):650-653.
    44.许志刚.普通植物病理学[M].北京:中国农业出版社,1997.
    45.许志刚.植物病原原核生物的分类现状[J].植物病理学报,1998,28(2):97-100.
    46.杨春泉,陈宜修,林玉,等.福建省番茄细菌性斑点病的病原鉴定[J].福建农林大学学报(自然科学版),2008,37(6):570-574.
    47.杨凤环,李正楠,姬惜珠,等BOX-PCR技术在微生物多样性研究中的应用[J].微生物学通报,2008,35(8):1282-1286.
    48.杨军,尹启生,宋纪真,等.植物病原细菌的hrp基因[J].遗传,2005,27(5):852-858.
    49.尹燕妮,黄艳霞,葛芸英,等.几种常用植物病原细菌分子检测方法[J].植物保护,2006,32(6):1-4.
    50.曾申艳,胡军,黄贵修,等.水稻黄单胞菌hrp基因簇中致病相关基因hpaB的鉴定[J].微生物学报,2007,47(3):402-406.
    51.张爱红,苗洪芹.几种植物病原细菌的检测和鉴定技术[J].河北农业科学,2008,12(8):30-32.
    52.张华,姜英华,胡白石,等.利用PCR技术专化性检测水稻细菌性条斑病菌[J].植物病理学报,2008,38(1):1-5.
    53.张晓梅,郭坚华,刘汉珍.小麦细菌性病害的调查及病原鉴定[J].植物保护,2004,30(4):60-62.
    54.张晓梅,林友伟,吴新华,等.菜豆萎蔫病菌的PCR检测技术[J].南京农业大学学报,2004,27(3):42-45.
    55.赵丽涵,谢关林,金扬秀,等.番茄细菌性斑疹病病原鉴定及其病害症状鉴别[J].植物保护,2006,32(5):45-47.
    56.赵文军,夏明星,陈红运,等.番茄溃疡病菌PCR快速检测技术[J].植物检疫,2007, 21(2):75-77.
    57.赵友福,魏亚东,高崇省,等.利用BIOLOG鉴定系统快速鉴定菜豆萎蔫病菌的研究[J].植物病理学报,1997,27(2):139-144.
    58. Bennasar, C. Guasp, M. Tesar, etc. Genetic relationships among Pseudomonas stutzeri strains based on molecular typing methods[J]. Journal of Applied Microbiology,1998(85):643-656.
    59. Abi S.A. Marques, Anne Marchaison, Louis Gardan, etc. BOX-PCR-based identification of bacterial species belonging to Pseudomonas syringae-P. viridiflava group[J]. Genetics and Molecular Biology,2008,31(1):106-115.
    60. Ana J.Goczalez, Elena Landeras, M.Carmen Mendoza. Pathovars of Pseudomonas syringae Causing Bacterial Brown Spot and Halo Blight in Phaseolus vulgaris L. Are Distinguishable by Ribotyping[J]. Applied And Environmental Microbiology,2000,66(2):850-854.
    61. Andreas Teske, Pavel Sigalevich, Yehuda Cohen, etc. Molecular Identification of Bacteria from a Coculture by Denaturing Gradient Gel Electrophoresis of 16S Ribosomal DNA Fragments as a Tool for Isolation in Pure Cultures[J]. Applied And Environmental Microbiology,1996,62(11):4210-4215.
    62. B. A. Latorre, J. A. Gonzalez, J. E. Cox, etc. Isolation of Pseudomonas syringae pv.syringae from Cankers and Effect of Free Moisture on Its Epiphytic Populations on Sweet Cherry Trees[J]. Plant Disease,1985,69(5):409-412.
    63. Bennasar, A., Rossello'-Mora, R., Lalucat, J. and Moore, E.R.B.(1996) 16S rRNA gene sequence analysis relative to genomovarsof Pseudomonas stutzeri and proposal of Pseudomonas balearica sp.nov. International Journal of Systematic Bacteriology 46, 200-205.
    64. Brent C.Christner, Brian H.Kvitko Ⅱ, John N.Reeve. Molecular identification of Bacteria and Eukarya inhabiting an Antarctic cryoconite hole[J]. Extremophiles,2003(7):177-183.
    65. Brian H.Kvitko, Adela R.Ramos, Joanne E.Morello, etc. Identification of Harpins in Pseudomonas syringae pv. tomato DC3000, Which Are Functionally Similar to HrpKl in Promoting Translocation of Type Ⅲ Secretion System Effectors[J]. Journal of Bacteriology, 2007,189(22):8059-8072.
    66. Byoung Keun Park, Ingyu Hwang. Identification of hrcC, hrpF, and miaA Genes of Xanthomonas campestris pv.glycines play roles in Pathogenicity and Inducing Hypersensitive Response on Nonhost Plants[J]. Plant Pathology Journal,1999,15(1):21-27.
    67. Charles Manceau, Alain Horvais.Assessment of Genetic Diversity among Strains of Pseudomonas syringae by PCR-Restriction Fragment Length Polymorphism Analysis of rRNA Operons with Special Emphasis on P. syringae pv. tomato[J].Applied And Environmental Microbiology,1997,63(2):498-505.
    68. Daniels M J, Leach J E. Genetics of Xanthomonas. In:Swings J G, Civerolo E Lieds-Xanthomonas-London:Chapman 8LHall.1993,302-339.
    69. David N.Fredricks, Tina L.Fiedler,Jeanne M. Marrazzo, etc. Molecular Identification of Bacteria Associated with Bacterial Vaginosis[J]. The new england journal of medicine, 2005(353):1899-1911.
    70. Derrick E.Fouts, Robert B.Abramovitch, James R.Alfano, etc.Genomewide identification of Pseudomonas syringae pv.tomato DC3000 promoters controlled by the HrpL alternative sigma factor[J]. PNAS,2002,99(4):2275-2280.
    71. E. Lucienne Mansvelt, M. J. Hattingh. Pear blossom blast in South Africa caused by Pseudomonas syringae pv.Syringae[J]. Plant Pathology,1986(35):337-343.
    72. G. W. Sundin, C. L. Bender. Ecological and Genetic Analysis of Copper and Streptomycin Resistance in Pseudomonas syringae pv. Syringae[J]. Applied And Environmental Microbiology,1993,59(4):1018-1024.
    73. Harald Keller, Philippe Bonnet, Eric Galiana, et al. Salicylic acid mediates elicitin—induced systemic acquied resistarice, but not necrosis in tobacco. MPMI,1996,9:696-703.
    74. Hyo Shim Han, Hye Young Nam, Young Jin Koh, etc. Molecular Bases of High-Level Streptomycin Resistance in Pseudomonas marginalis and Pseudomonas syringae pv. actinidiae[J]. The Journal of Microbiology,2003,41(1):16-21.
    75. J. Hinrichs Berger.Epidemiology of Pseudomonas syringae pathovars Associated with Decline of Plum Trees in the Southwest of Germany[J]. J. Phytopathology,2004(152): 153-160.
    76. J.M. Young, C.M. Triggs.Evaluation of determinative tests for pathovars of Pseudomonas syringae van Hall 1902[J]. Journal of Applied Bacteriology,1994(77):195-207.
    77. Joana G. Vicente,Steven J. Roberts.Discrimination of Pseudomonas syringae isolates from sweet and wild cherry using rep-PCR[J]. Eur J Plant Pathol (2007) 117:383-392.
    78. Jose A.Oguiza, Arantza Rico, Luis A.Rivas, etc. Pseudomonas syringae pv. phaseolicola can be separated into two genetic lineages distinguished by the possession of the phaseolotoxin biosynthetic cluster[J]. Microbiology,2004(150):473-482.
    79. Juliana Camargo Martinati, Flavia Tereza Hansen Pacheco, Vitor Fernandes Oliveira deMiranda, Siu Mui Tsai.16S-23SrDNA:Polymorrhisms And Their Heir Use For Detection And Identification Of Xylella Fastidiosa Strains. Brazilian Journal of Microbiology (2007) 38:159-165.
    80. L. Gardan, H. Shafik, S. Belouin, etc. DNA relatedness among the pathovars of Pseudomonas syringae and description of Pseudomonas tremae sp. nov. and Pseudornonas cannabina sp. nov.(ex Sutic and Dowson 1959)[J]. International Journal of Systematic Bacteriology, 1999(49):469-478.
    81. Lindgren P B, Peet R C, Panopo ulos N J H. Gen e cluster of Pseudomonas syringae pv. phaseolicola controis pathogenicity on bean plants and hypersensitivity on nonhost plants-J. Bacteriol,1986,168:512-522.
    82. Luis Otávio S.Beriam, Irene M.G.Almeida, Suzete A.L.Destefano, etc. Pseudomonas syringae pv. tabaci in papaya seedlings[J]. Summa Phytopathol., Botucatu,2006,32(1): 21-26.
    83. M. Menard, L.Sutra, J.Luisetti, etc. Pseudomonas syringae pv. avii (pv. nov.), the causal agent of bacterial canker of wild cherries (Prunus avium) in France[J]. European Journal of Plant Pathology,2003(109):565-576.
    84. Maureen C. Whalen, Roger W.Innes, Andrew F.Bent, etc. Identification of Pseudomonas syringae Pathogens of Arabidopsis and a Bacterial Locus Determining Avirulence on Both Arabidopsis and Soybean[J]. The Plant Cell,1991(3):49-59.
    85. Monika Sulikowska, Piotr Sobiczewski. Pseudomonas spp. Isolated From stone fruit Trees In Poland[J]. ZemdirbysteAgriculture,2008,95(3):166-170.
    86. Myra N. Widjojoatmodjo, AD C.Fluit, Jan Verhoef.Molecular Identification of Bacteria by Fluorescence-Based PCR-Single-Strand Conformation Polymorphism Analysis of the 16S rRNA Gene[J]. Journal of Clinical Microbiology,1995,33(10):2601-2606.
    87. R. A. Lelliott, Eve Billing, A. C. Hayward. A Determinative Scheme for the Fluorescent Plant Pathogenic Pseudomonads[J]. J. appl. Bact.,1966,29(3):470-489.
    88. S, K, Whitesides, R.A.Spotts.Induction of pear blossom blast caused by Pseudomonas syringae pv. syringae[J]. Plant Pathology,1991(40):118-127.
    89. S.A.L. Destefano, I.M.GAlmeida, J.Rodrigues Neto, etc. Differentiation of Xanthomonas species pathogenic to sugarcane by PCR-RFLP analysis[J]. European Journal of Plant Pathology,2003(109):283-288.
    90. S.Gopalan, W.Wei, S.Y.He. hrp gene-dependent induction of hin:a plant gene activated rapidly by both harpins and the avrPto gene-mediated signal[J]. The plant Journal,1996, 10(4):591-600.
    91. Stephane Poussier, Jacques Luisetti. Specific detection of biovars of Ralstonia solanacearum in plant tissues by Nested-PCR-RFLP[J]. European Journal of Plant Pathology,2000(106): 255-265.
    92. Weisburg, W. G., Barns, S. M., Pelletier, D. A.& Lane, D. J. (1991).16S ribosomal DNA amplification for phylogenetic study. J Bacterial,173,697-703.
    93. Y.Takahashi, T.Omura, H.Hibino, etc. Detection and Identification of Pseudomonas syringae pv.atropurpurea by PCR Amplification of Specific Fragments from an Indigenous Plasmid[J]. Plant Disease,1996,80(7):783-788.
    94. Yasuhiro Inoue, Yuichi Takikawa. Pseudomonas syringae Strains Are Classified into Five Groups by Comparing DNA Homology at the hrp Neighboring Regions[J]. J. Gen. Plant Pathol,2000(66):238-241.
    95. Yasuhiro Inoue, Yuichi Takikawa. The hrpZ and hrpA genes are variable, and useful for grouping Pseudomonas syringae bacteria[J]. J Gen Plant Pathol,2006(72):26-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700